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3 CP Quantum Mechanics 
by Lutz Jaitner, May, 2016 through August, 2017 

3.1 Basic Assumptions 

Modeling of CP is based on the following basic assumptions: 

(1) CP contain ensembles of atomic nuclei densely lined up in a long and very narrow channel. 

(2) The distances between the nuclei are so small, that all electrons bound to these nuclei are delocalized along the 
channel. In other words: Even in their electronic ground state CP don’t consist of individual atoms. CP rather 
form a quasi-one-dimensional plasma (this could also be seen as a metal). 

 

Figure 3 Basic model of a CP. The CP similarly extends to the left and to the right of this picture 

3.2 The Cylindrical Model of CP 

The shape and quantum mechanical state of CP can be very complicated. In order to obtain a simple quantum 
mechanical description of CP, the following simplifications are used, which will subsequently be called “the cylindrical 
model of CP”: 

(3) The CP is perfectly straight and cylindrically symmetric, i.e. it is not bent to rings, helices etc. The CP is 
oriented in parallel to and centered on the z-axis of the modeling cylindrical coordinate system. 

(4) The CP has the length L  and contains a total nuclear charge Q in its core zone (explained below). 

(5) The electron wave functions of the CP are confined in the interval Lz <≤0 . At Lz =  these wave function 

are continuously extended to their value and gradient at 0=z , as if the CP were rings. However, this is meant 

to describe only the circular boundary condition of the wave functions at Lz = , not the shape of the CP. 

(6) No external field is applied to the CP. 

(7) A jellium model is used for the spatial distribution of the nuclear charge. This means, the positive charges of 
the nuclei are modeled as a uniform "positive jelly" background, rather than point charges with distances in 
between. The nucleic charge density is assumed to be constant in axial and azimuthal direction, but it depends 
on the radial distance. 

(8) The jellium is modeled differently in the core zone and in the halo zone. The narrow core zone is within the 
reach of the electron wave functions. The diffuse halo zone is outside the reach of the electron wave functions. 

(9) The nucleic charge distribution of the core zone is modeled by means of a two-dimensional normal distribution 
in radial direction. The fraction of nuclei residing in the core zone, as well as the standard deviation, are to be 
determined by variation, such that the total energy of the CP is minimized. 
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(10) It is assumed, that the halo zone consists of ions each having one positive elementary charge. The ion charge 
distribution of the halo zone is modeled, such that the positions of the ions are in equilibrium with the electric 
potential of the CP. 

(11) The CP is assumed to reside in a vacuum. Interaction of the CP with surrounding matter is thus neglected. 

(12) Only stationary states are modeled, as the goal is to describe the ground state of CP. Consequently, the model 
assumes there is no electron scattering, i.e. there is no momentum transfer between electrons and the nuclei. 

(13) For computing the repulsion energy among the nuclei, short-range corrections to the jellium model have to be 
made, which account for the granularity of the nuclear charges. In case the CP contains a mixture of different 
sorts of atomic nuclei, only the mean nuclear charge is taken into account for the corrections in the core zone, 
rather than the individual nuclear charges. 

(14) The time-independent Klein-Gordon equation is used for modeling the electron wave functions, thereby 
neglecting the magnetic moments of electron spins. The Klein-Gordon equation is taking care of the large 
relativistic effects occurring in CP, e.g. the mass defect stemming from the very high binding energy of the 
electrons. (Clearly, the Dirac equation would be more adequate for modeling CP. However, the involved 
complexities of such approach are avoided here.) 

(15) The magnetic field of the azimuthal electron orbits is neglected. 

(16) Magnetic field from nuclear spins is neglected. 

(17) The electron wave functions are modeled in an inertial frame of reference, where no magnetic field is created 
by any collinear movements of the nuclei. This simplification amounts to an approximation in cases where the 
nucleic velocities are position dependent. 

(18) The multi-electron system is approximated by computing a collection of one-electron orbitals, whereby each 
electron orbital is subjected to the mean electric potential and magnetic vector potential created by the total 
charge density and total current density of all other occupied orbitals and the nuclei. The Pauli exclusion 
principle is used for determining orbital occupations of the ground state. Exchange and correlation energies are 
neglected. 

(19) Quantum field theory is not engaged. Particle count is conserved. Eigenstates are excluded as solutions of the 
Klein-Gordon equation, where the corresponding total energy eigenvalue (including the electron’s rest energy) 
of the electron is negative. 

(20) Only bound eigenstates of the electrons are considered, i.e. the total energy of an eigenstate has to be less than 
the electron rest energy (i.e. the sum of the potential energy and the kinetic energy has to be negative). 

3.3 The Klein-Gordon Equation of a CP 

Initial calculations of a CP with the Schrödinger equation have shown, that the resulting binding energy of the electrons 
would potentially exceed the rest energy of the electrons by orders of magnitude. These results were absurd in light of 
special relativity, because the mass defect per bound electron should never exceed twice its rest mass. Therefore, a 
Lorentz-covariant quantum mechanical equation is absolutely required to model CP. 

Generally, the Dirac equation is regarded as the correct Lorentz-covariant equation for modeling fermions, especially 
when the effects resulting from the particle’s spin is of concern. Unfortunately, the Dirac equation involves 4-
component wave functions and the solution of four coupled differential equations, resulting in sizeable mathematical 
and computational efforts. 

Assuming that the electron spins have only minor effects on the binding energy, charge density, current density and 
other observables, the Klein-Gordon equation provides a Lorentz-covariant alternative to the Dirac equation for 
modeling the electrons of CP. At the non-relativistic limit the Klein-Gordon equation is equivalent to the Schrödinger 
equation, while both equations share the deficiency of not modeling the spin. 

In relativistic electrodynamics with so-called minimal coupling, the sum of the kinetic energy and the potential energy 
of an electron moving in a static electromagnetic potential is: 

(21) ( ) ( ) eΦcmcmAecpceΦcmE eee −−++=−−= 242221
rrγ , where e is the elementary charge, c is the 

speed of light, Φ  is the electric potential, A
r

 is the magnetic vector potential, p
r

 is the electron’s momentum, 

em is the electron rest mass and γ  is the Lorentz factor 
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Therefore: 

(22) ( ) ( ) ( ) 4222222 cmAecpccmcmeΦE eee ++==++
rrγ  

All formulas are written in SI units, unless otherwise noted. Throughout this document, energy symbols with a bar on 

top (e.g. E ) denote, that the energy is measured in Joule. Energy symbols without a bar on top denote, that the energy 

is measured in units of the Hartree energy divided by the fine structure constant αhE  (90), i.e. the energy is a 

dimensionless quantity in the respective formula. Likewise, other symbols with a bar (e.g. σ , zJ ) are in SI units, 

while its counterparts without the bar are in natural units (i.e. dimensionless). 

By quantizing the momentum via the del operator ∇−≡ h
r

ip  and applying both sides to an electron wave function 

Ψ , equation (22) transforms to the stationary Klein-Gordon equation of an electron in a static electromagnetic 
potential: 

(23) ( ) ( ) ( )[ ] Ψ++∇−=Ψ=Ψ++ 4222222 cmAeccicmcmeΦE eee

r
hγ , where  

h  is the reduced Planck constant 

Due to simplification (19), Ψ  is called here a “wave function”, rather than a “quantum field”. 

The term 2cmE e+  represents the total energy of the electron, i.e. the sum of its rest energy, potential energy and 

kinetic energy. Usually the Klein-Gordon equation is written, such that the total energy is sought as the eigenvalue of 

this differential equation. However, this document deviates from the customary approach. Instead, the quantity E  is 
sought here as the eigenvalue (both approaches are equivalent in their results).  

In quantum mechanics a multi-electron system is correctly described by a single wave function ( )Nrrr
rrr

,..., 21Ψ  

depending on the positions of the N electrons. The multi-electron wave function is usually formed by a Slater 
determinant (or a linear combination of several Slater determinants) to ensure anti-symmetry and the Pauli exclusion 
principle. 

However, the number of electrons in a CP can exceed 1010, which renders a Slater determinant entirely impractical to 
compute, because a program cannot handle equations with e.g. 1010 positions and compute determinants of this size. 

According to simplification (18) a rigorously simpler approach is used here for modeling CP, requiring only moderate 
compute power: 

So, instead of using a multi-electron Klein-Gordon equation describing the pair-wise interaction between N electrons, 

the cylindrical model uses N single-electron Klein-Gordon equations with N wave functions ( )r
rΨ , each 

describing a single electron in the mean potential of all other electrons and the nuclei. 

Of course, this is merely an approximation. For example, the approach doesn’t account for the exchange energy and the 
correlation energy usually deemed important in quantum chemistry. 

At first glance this looks still challenging to compute, because there are N Klein-Gordon equations to be solved. 
Fortunately, large numbers of these equations can be computed in groups, because they produce nearly the same charge 
density distributions and current density distributions. 

Expanding the right side of (23) and using 0=⋅∇ A
r

 (Lorentz gauge in the static case) yields: 

(24) ( ) ( ) ( )Ψ+⋅+∇⋅−∇−=Ψ=Ψ++ 422222222222 2 cmAAceAeciccmcmeΦE eee

rrr
hhγ  

According to simplification (14) and (15) the magnetic field of the electron spins and of the azimuthal movement of the 
electrons is neglected. Thus the only source of the magnetic field is the current carried by the electrons moving in z-
direction. Therefore, the vector potential is everywhere oriented in z-direction: 

(25) zzeAA
rr

=  
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The Laplace operator expands in cylindrical coordinates as following: 

(26) 2
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, where ρ is the radial distance from the z-axis, φ is the azimuth and 

z is the coordinate of the z-axis 

Inserting (25) and (26) into equation (24) and dividing both sides by 22 cme  is resulting in the stationary Klein-

Gordon equation of an electron in the mean potential of a CP’s all other electrons and the nuclei: 
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With simplification (6) the electric potential Φ  is depending solely on the electron charge density ( )ρσe  and the 

nuclear charge density ( )ρσ n . The magnetic vector potential zA  is solely depending on the electric current density 

( )ρzJ . The electron charge density and the electric current density are derived from the modulus square of the other 

electron’s wave functions. This approach has similarities with the density functional theory (DFT) used in quantum 
chemistry modeling, except that the exchange and correlation energies are not accounted for. However, the influence of 
the magnetic field on the co-linear electron-electron interaction is maintained and the Pauli exclusion principle will be 
obeyed during orbital occupation. 

3.4 Boundary Conditions for Solutions of the Klein-Gordon Equation 

Care must be taken according to simplification (19), that the total energy 2cmE e+  of an eigenstate is always 

positive, therefore: 

(28) 2cmE e−>  

Requirement (28) can be fulfilled by excluding eigenstates with a negative total energy as solutions of the Klein-Gordon 
equation. 

According to simplification (20) only bound eigenstates are considered. Therefore the wave function amplitude must 
disappear at infinite radial distances: 

(29) ( ) 0lim =Ψ
∞→

ρ
ρ

 

By definition of a bound state the total energy of the electron is less than its rest energy: 

(30) 22 cmcmE ee <+ , therefore 0<E  

Combining (28) and (30) yields for bound states: 

(31) 02 2 <<− Ecme  

For computing observables the Klein-Gordon electron wave functions according to [10] have to be normalized such 
that: 

(32) rd
r2

3

1 ∫∫∫ Ψ=Ψ=
R

γ  

However, when computing the current density (or related observables, like the electron velocity), one has to normalize 
the wave functions via (32) by setting 1=γ . 
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3.5 Observables of the Klein-Gordon Electron Wave Function 

Generally one can compute an observable O
~

 from the Klein-Gordon wave functions Ψ  as following: 

(33) ( )∫∫∫ ΨΨ=
3

~~ *

R

rdOrO
rrγ , where *Ψ  is the conjugate complex of Ψ  and γ  is the local Lorentz factor 

According to [10] the local Lorentz factor computes as: 

(34) ( ) ( )
12 ++=

cm

reΦE
r

e

r
rγ  

The factor γ  in (33) can be understood by special relativistic time dilation: An electron statistically spends by a factor 

of γ  more time in areas of high velocity, because the time in the electron’s frame of inertia elapses slower than the time 

in the frame of inertia of the observer, who measures the observable. Therefore, these areas have to be weighted higher 
by a factor of γ  during integration. 

According to [10] the volume charge density distribution of electron number i in a static electromagnetic potential 
computes as following: 

(35) 
2

, iiie e Ψ−= γσ , where iγ  is the local Lorentz factor at the position of ie,σ  

Summing this up for all electrons of the CP is resulting in: 

(36) ∑
=

Ψ−=
N

i
iie e

1

2γσ  

According to [10] the current density distribution of electron number i in a static electromagnetic potential 
computes as following: 

(37) ( )
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
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Summing this up for all N electrons of the CP provides: 

(38) ( )∑
=
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Using product ansatz (55), modulus square factorization (57) and zΨ -solution (61), the z-component (in cylindrical 

coordinates) of the current density (38) in a CP computes as: 

(39) ∑
= 
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( )[ ]∑
=

Ψ−=
N

i
ii

e

k
Lm

e

1

2

,2
ρ

π ρh , where ikh  is the z-component of the electron’s momentum 

When using (37), (38) and (39) for computing the current density, one has to normalize the wave functions via (32) by 
setting 1=γ . 

When (36), (38) and (39) will be used for determining the electric and magnetic potentials in the Klein-Gordon equation 
(27), the electron number i is incorrectly exposed also to its own potential. However, this error is quite small, if the CP 
contains very many electrons. 
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The expected value of the current  in z-direction carried by all electrons of the CP can be computed by integrating (39) 
over all radius values and azimuth values: 

(40) ∑∫ ∫
=

∞ −==
N

i
i

e
zz k

Lm

e
ddJI

1

2

0 0

hπ
ϕρρ  

The expected value of the electron group velocity’s z-component (averaged over all N electrons of the CP) can be 
computed from the z-component of the current: 

(41) 
Ne

LI
v z

z −
= , where L  is the length of the CP 

The z-component of the local group velocity of an electron can be computed by dividing the z-component of the 

electron’s momentum by the relativistic electron mass emγ : 
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Note, that in the relativistic case the momentum is constant in ρ-direction, whereas the velocity is depending on ρ via 
the local gamma factor. 

According to [10] the expected value of the electron orbit radius for eigenstates of equation (27) is: 

(43) ( )∫
∞

Ψ=
0

22 ρρργρ d  

3.6 The Electromagnetic Potential of a CP 

The electric potential of a CP splits as follows: 

(44) en ΦΦΦ += , where nΦ  is the electric potential of the nuclear jellium according to simplification (7) and 

eΦ  is the electric potential of the electrons 

As a tool for computing the electromagnetic potential the following geometry is analyzed: 

A sample charge at distance ρ from the z-axis (origin) and azimuth φ shall act as the point of measurement for vector 

potential zA  and the electric potentials nΦ  and eΦ . 

The following figure illustrates this further: 

 

Figure 4 Scheme for computing the electromagnetic potential. This shows a cut perpendicular to the z-axis. 

From the geometry of Figure 4 it can be concluded: 

(45) ϕρ cos′=c  

(46) ϕρ sin′=h  
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(47) ( ) ( ) 2222222 cos2sincos ρϕρρρϕρϕρρρ +′−′=′+′−=+−= hcD  

The following figure shall illustrate the geometry in z-direction: 

 

Figure 5 Scheme for computing the electromagnetic potential. This shows a cut in parallel to the z-axis. 

From Figure 5 it can be concluded: 

(48) 22 DzD +=′  

Figure 5 shows an infinitesimal thin line of charge extending from 2Lz −=  to 2Lz = . This line is in parallel to 

the z-axis. The volume charge density ( )ρσ ′  is constant along the line. An infinitesimal charge density element with a 

volume of dzdd ϕρρ ′′  contains a charge of: 

(49) ( ) dzdddQ ϕρρρσ ′′′= , where 

(50) ( ) ( ) ( )[ ]ρσρσρσ ′+′=′ en , i.e. the sum of the nuclear charge density and the electron charge density 

The electric potential at distance D from the infinitesimal line of charge and at axial position 0=z  computes as 
following: 
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Inserting (47) into (51) and integrating over ρ' and φ yields the contribution of the entire CP to the electric potential 
(in Lorentz gauge, static case): 

(52) ( ) ( ) ( )∫
∞

′′′′=
0

0

,
2

1 ρρρρρσ
πε

ρ dGΦ , where 

(53) ( ) ( )
∫ +′−′
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π
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ρϕρρρ
ρϕρρρρρ

2

0 22
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cos222
ln, d

LL
G  is the geometry integral 

By replacing ( ) 0ερσ ′  with ( )ρµ ′zJ0  in (52) provides the z-component of the CP’s magnetic vector potential (in 

Lorentz gauge, static case): 

(54) ( ) ( ) ( )∫
∞

′′′′=
0

0 ,
2

ρρρρρ
π

µρ dGJA zz ,  

where µ0 is the vacuum permeability and ( )ρ ′zJ  is the z-component of the current density 

Based on the circular boundary condition (5) the electric potential (52) and the vector potential (54) are made to be 
constant in z-direction. This approximation is required for maintaining the full cylindrical symmetry of the model. 
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The radial and azimuthal (see simplification (15)) components of the vector potential and the current density is zero 
everywhere. Due to simplification (17) the nuclear jellium is not contributing to the current density. 

Note, that ( ) 0lim =
∞→

ρ
ρ
Φ  and ( ) 0lim =

∞→
ρ

ρ zA . Equations (52) and (54) therefore can be used for determining the 

binding energy of electrons to a CP without engaging a non-zero reference potential. 

3.7 Product Ansatz 

The following product ansatz is made to factorize the electron wave function: 

(55) ( ) ( ) ( ) ( )zz zΨΨΨ=Ψ ϕρϕρ ϕρ,,  or in short: zΨΨΨ=Ψ ϕρ  

The wave function of a single electron is supposed to be normalized and it represents a stationary state. In azimuthal 

direction and in axial direction the electromagnetic potential is constant. Therefore the modulus square of ϕΨ  and zΨ  

is also constant: 

(56) 
πϕϕϕ 2
1*2

=ΨΨ=Ψ  and 
Lzzz

1*2 =ΨΨ=Ψ  

Hence the modulus square of the entire wave function factorizes as: 

(57) ( ) ( ) ( ) ( ) ( ) ( ) ( )2***2

2
1 ρ
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ϕϕρρ ρϕϕρρ Ψ=ΨΨΨΨΨΨ=Ψ
L

zz zz  

The normalization criteria  (32) could then be carried out as: 

(58) ( ) ( ) ρρρργ ρ d∫
∞

Ψ=Ψ=
0

2
1  

3.8 Separation of the Klein-Gordon Equation 

With product ansatz (55) the partial derivatives of the wave function are: 
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Inserting this into the equation (27) and dividing both sides by Ψ  yields: 
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Remark for the mathematical purity: The division by Ψ  is done here out of convenience. It could have been postponed 
to a later step without affecting the end result, such that wave functions (which can have zeros) never show up in the 
denominator. 

The following wave function is solving the z-dependent part of (60): 

(61) ikz
z e

L

1=Ψ , where R∈k  

Due to simplification (5) the energy eigenvalues are quantized to a discrete spectrum, because wave number k has to 
meet the following boundary condition: 

(62) 
L

lk
π2= , where Z∈l  
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Integer l acts as an axial quantum number here (This quantum number l should not be confused with the l in 

Laplace’s spherical harmonic function ( )ϕθ ,m
lY  used for modeling the electrons of atoms). 

The following wave function is solving the φ-dependent part of (60): 

(63) ϕ
ϕ π

ime
2
1=Ψ , where Z∈m  

Integer m is the azimuthal quantum number. 

Inserting (61), (62) and (63) into (60) provides the radial Klein-Gordon equation of a CP: 
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At the non-relativistic limit  the term ( ) ( )2cmeΦEx e+=  approaches zero. By using only the first two terms of the 

Taylor series of ( )21+x  about 0=x  one can approximate: 

(65) ( ) xx 211 2 +≈+  

With this approximation equation (64) becomes the radial Schrödinger equation of a CP: 
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The radial Schrödinger equation (66) is based on the non-relativistic Hamiltonian  for an electron in an 
electromagnetic field with minimal coupling: 
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The eigenstates of differential equation (64) or (66) provide the radial wave functions ρΨ . The eigenvalues E  of 

bound states are discrete, i.e. they are countable by a principal quantum number n, the azimuthal quantum number m 
and the axial quantum number l. The principal quantum number  n = 1, 2, 3, … is defined here analogous to the 

hydrogen atom: n equals one plus the number of node lines of ϕρ ΨΨ , therefore 1+≥ mn  (In a stricter sense, ϕΨ  

has no node lines. However, a standing wave of two superposed azimuthal wave functions, differing only in the sign of 
quantum number m, has m node lines.) 

Principal quantum number n has no explicit representation in (64) or (66) or in any of the following formulas. It is 
useful however, as an ordering scheme for computational results. 

One has to keep in mind, that the eigenvalues E , the eigenstates ρΨ , ϕΨ  and zΨ , as well as the quantum numbers n, 

m and l  are generally distinct for each electron of the CP. In order to ease readability, the electron number as an index 
has been omitted from these symbols, unless the index is needed in a summation. 
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3.9 The Jellium Model of the Nuclear Charge Distribution 

According to simplification (7) the charge of the nuclei is treated as if it were a uniform "positive jelly" background, 
rather than point charges with distances in between. 

The nuclear charge density distribution ( )ρσ n  of the jellium has cylindrical symmetry, i.e. it doesn’t depend on φ and 

z. It is a function of the radial distance ρ. 

According to equations (44), (50) and (52) the electric potential of the nuclear jellium is: 

(68) ( ) ( ) ( )∫
∞

′′′′=
0

0

,
2

1 ρρρρρσ
πε

ρ dGΦ nn  

An infinitesimal charge density element ( ) dzddn ϕρρρσ ′′′  brought into potential nΦ  has the potential energy: 

(69) ( ) ( ) dzddΦEd nnn ϕρρρρσ=  

Integrating (69) over the entire space and dividing the result by two yields the nuclear self-repulsion energy: 

(70) ( ) ( ) ( ) ( )∫∫ ∫ ∫
∞∞

+−=+−=
00
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0 02
1 ρρρρσπϕρρρρσ

π
dΦLEdzddΦEE nnG

L

nnGn , where  

GE  is the granularity correction (78), 0>nE  and 0>GE  

The division by two in (70) takes care of the fact, that the jellium is interacting with itself and the repulsion energy must 
not be accounted twice during integration. 

Equation (70) needs to be corrected by GE  in order to account for the granularity of the nuclear charges. For this 

purpose the following approximation is made: 

Regarding simplification (13) the nuclei are assumed to have a mean charge of mZ . The mean charge is determined by 

the average of the nuclear charges iZ  of the atomic sort weighted by the fraction 10 << iF  of the respective atomic 

sort: 

(71) ∑=
n

iim ZFZ
0
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0

=∑
n

iF  and n is the number of different atomic sorts of the mixture 

The volume occupied by one nucleus would be: 
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Hence the radius R of a sphere with volume 1V  would be: 
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Assuming that the charge density nσ  is constant within 1V , the electric potential of the sphere is: 
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The self-repulsion energy of the jellium within sphere 1V  (i.e. for case Rr ≤ ) would be as following: 
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In reality 1E , i.e. the self-repulsion energy of a single nucleus, is zero. This is, because a nucleus doesn’t repel itself. 

Therefore the self-repulsion energy (70) needs to be subtracted by (75) for each nucleus in the CP. 

An infinitesimal cylindrical zone of a CP with radius ρρρρρ dd
2
1

2
1

11 +≤≤−  has the volume: 

(76) ρρπ dLdV 2=  

The number of nuclei residing in volume dV is: 
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( ) ρρρσπ d

Z
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V
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m
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1

==  

Multiplying (77) with 1E  and integrating over ρ yields the granularity correction  of the core jellium’s self-repulsion 

energy: 
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According to simplification (10) the jellium’s charge distribution of the halo zone shall be modeled, such that the 
positions of the cations are in equilibrium with the electric potential of the CP. This is the equilibrium of two pressures 
resulting from Coulomb forces:  The repulsive pressure between neighboring ions and the attractive pressure from the 
CP’s electric potential (52). 

Each ion has the following radius: 

(79) 3
4
3

n

e
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σπ
=  

A sphere with this radius has a surface area of: 

(80) 24 RA π=  

The repulsive Coulomb force between two neighbor ions is: 
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As an approximation it is assumed that the Coulomb force component perpendicular to the surface area (80) is constant 
over this area. 

Therefore, the Coulomb force is resulting in a pressure of: 
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An infinitesimal cylindrical zone (76) contains the charge: 

(83) ρρσπ dLdQ n2=  

This charge is attracted by the CP’s electric potential (52) with the following force: 
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Force (84) is perpendicular to the surface Lπ2  of the cylindrical zone (76), thus creating an incremental pressure of: 
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Integrating (85) over the radius yields the pressure at radial distance ρ ′′ : 
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Pressures 1P  and 2P  have to be identical in order to maintain an equilibrium of the repulsion between neighboring ions 

and the global attraction of the jellium by the electric potential of the CP, as is required by simplification (10).  

Therefore: 
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The ion charge density distribution of the halo zone has to be computed iteratively (by variation), such that equation 
(87) becomes approximately true for all values ρ ′′  of the halo zone. During these computational iterations the electron 

wave functions should be kept constant, because there is presumably very little dependency between the electron charge 
distribution and the nuclear charge distribution of the halo. 

According to simplification (9) the nucleic charge distribution of the core zone is modeled by means of a two-
dimensional normal distribution in radial direction: 
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where s  is the standard deviation in meter, Q is the nuclear charge in the core zone 

The distribution function (88) is normalized, such that the integral over all space (in Cartesian coordinates) yields the 
total nuclear charge Q of the core: 
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ρσ , where 222 yx +=ρ  

The fraction of nuclei residing in the core zone, as well as the standard deviation, are to be determined iteratively (by 
variation), such that the total energy of the CP is minimized. During each computational iteration the electron 
eigenstates have to be recomputed, as they strongly depend on the nuclear charge distribution of the core. 
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3.10 Transformation to Natural Units 

In the following text the Hartree energy will be used as a unit of measure for energy. It is defined as: 
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α  is the fine structure constant. 

The electron rest energy in units of hE  therefore becomes: 
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The following equation defines a reference radius: 

(94) 
n

a

λ
ρ 0

0 ≡ , where 

(95) 
Le

Q
n

1≡λ  is the linear nuclear charge density in the core zone in natural units, Q  is the nuclear charge in 

the core zone and 

(96) 
0a

L
L ≡  is the CP length in units of the Bohr radius. 

The definition of the reference radius was crafted, such that the relative radial extent of the electron orbits at the non-
relativistic limit becomes independent of the linear nuclear charge density. 

The relative radius is defined as: 

(97) 
0ρ

ρ≡r  

The volume charge density in natural units is defined here as: 
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a σσσσσσ +=≡+=
3
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The current density in natural units is defined here as: 

(99) zz J
ec

a
J

3
0≡  

Additionally, the following quantities are defined here: 

(100) hEEE ≡ , i.e. the sum of the potential energy and the kinetic energy of the electron, which is 

functioning as the energy eigenvalue of the Klein-Gordon equation 

(101) hehnheCnCC EΦeEΦeEΦeEEE −−=−≡+= ,, , i.e. the potential energy term related to the 

Coulomb potential of the electrons and the nuclei as seen by an electron (negative sample charge) 
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(102) 
L

l
Ez

π2≡  is the axial momentum of the electron in natural units. The related term 22
zE  is the axial 

kinetic energy of the electron in natural units 

(103) hzM EAecE α−≡  is the magnetic vector potential in natural units. The related terms MzEE−  and 

22
ME  are the magnetic electron-electron interaction energy and the so-called diamagnetic energy, 

respectively 

(104) hnn EEE ≡ , i.e. the nuclear self repulsion energy 

(105) hGG EEE ≡ , i.e. the granularity error  of the nuclear jellium 

The radial wave function in natural units is defined as: 

(106) ρρ Ψ≡ 0R  

(107) ( ) ( )[ ] 12 +−= rEEr Cαγ  is the local Lorentz factor computed from the energies in natural units 

Dividing both sides of (64) by hE , using the product rule of calculus and substituting via (93), (96), (100), (101), 

(103), and (102) is resulting in: 
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Substituting (97) and (106) in (108), using the notation R′  and R′′  for the first and second derivative to r of radial 

wave function R  and multiplying both sides of the equation by 0ρ  yields the radial Klein-Gordon equation in 

natural units: 

(109) ( ) 0
2
11

22
1

222 2

2

2

2
2

2

2

=











+







 +−−−++′−′′− REEEE
r

m
R

r
R CMz

nnn

αα
αλλλ

 

The Schrödinger equation (66) in natural units is: 
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The geometry integral (53) can be expressed in natural units as: 
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Multiplying (36) with ea 3
0  and using (57) and (106) yields the volume charge density in natural units: 

(112) ( ) ( ) ( )∑
=

−=
N

i
ii

n
e rRr

L
r

1

2

2
γ

π
λσ  

Multiplying (39) with ( )eca 3
0  and using (62), (92), (96), (102) and (106) yields the current density in natural 

units: 
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Multiplying both sides of (52) by hEe−  and substituting via (97), (98), (101), (112) and (120) provides the Coulomb 

energy term: 
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Multiplying both sides of (54) by hEecα− , substituting via (97), (99), (103), (106) and (113) and using 
2

00
−= cµε provides the magnetic vector potential in natural units: 
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By dividing (43) by 0ρ  and using (94), (97) and (106) the expected value of the electron orbit radius in natural units 

becomes: 
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Dividing (70) by hE  and using (78), (90), (94), (98), (101) and (105) and taking care of the fact, that the sample 

charges are positive, yields the nuclear self-repulsion energy in natural units: 
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 is the granularity error  in natural units, 0>GE  

Using (94), (106) and 0 the normalization criteria  (58) in natural units becomes: 
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The standard deviation of the nuclear charge distribution in the core zone in natural units is: 

(119) 
0ρ

s
s ≡  

Multiplying both sides of (88) with ea 3
0  and substituting via (94), (95), (96), (97) and (119) yields the nuclear 

charge distribution of the core zone in natural units: 
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3.11 Approximate Solution of the Radial Wave Function 

The following ansatz will be used for approximating the radial wave function: 

(121) ( ) ( ) ( )rrfrR ζ−⋅= exp , where 

( )rf  is assumed to be a polynomial and +∈ Rζ  is a tunable scaling factor. 

The radial Klein-Gordon equation (109) has a second solution, which is linear independent of the solution gained by 
ansatz (121). The second solution would be represented by the following ansatz: 

(122) ( ) ( ) ( )rrfrR ζexp⋅= , where +∈ Rζ  
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However, this second solution and all linear combinations with it were incompatible with boundary condition (29). 
Therefore, this second solution ansatz will not be used. 

The first derivative of the radial wave functions (121) reads: 

(123) ( ) ( )rffR ζζ −⋅−′=′ exp  

The second derivative of the radial wave functions is: 

(124) ( ) ( )rfffR ζζζ −⋅+′−′′=′′ exp2 2  

The value of ζ can be determined by analyzing the asymptotic behavior of the wave function R at ∞→r : 

The electromagnetic potential (and therefore the energy terms CE  and ME ) become zero, when the radius approaches 

infinity. Also, the terms proportional to r1  and 
21 r  disappear at ∞→r . The Klein-Gordon equation (109) then 

simplifies to: 
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Inserting (122) and (124) into (125) leads to: 
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Assuming function f can be approximated by a polynomial of finite degree, the function dominates over its derivatives 
at ∞→r  and therefore the exponential scaling factor is: 
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The case of 0≥E  does not apply here, because of simplification (20). Only the positive value of the square root is 
valid here, because of ansatz (121). 

Solving (127) for the energy provides: 
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Only the positive value of the square root is valid here, because of boundary condition (31). 

Equation (128) in conjunction with boundary condition (31) has interesting consequences: 
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, i.e. the scaling factor ζ is limited by means of the axial kinetic energy at the 

low end and by the means of the rest energy at the high end 

At the non-relativistic limit  the exponential scaling factor computes as: 
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Inserting (121), (123), (124) and (130) into radial Klein-Gordon equation (109) is leading to: 
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For the non-relativistic limit the Schrödinger equation (110) is leading to: 
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Solutions to differential equation (131) or (132) consist of eigenvalues of ζ and eigenstates of polynomial f. These 
solutions can then be used to compute the eigenvalues of E and eigenstates of R of the radial Klein-Gordon equation 
(109) or Schrödinger equation (110). 

Function f(r) can be approximated by a polynomial of r as following: 
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j
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The summation runs over a number J+1 of terms, depending on the desired accuracy of the approximation (in practice 
J needs to be about 200 with 80-bit floating point numbers for “reasonable” accuracy). The (generally arbitrary) phase 
of the (generally complex) wave function R is chosen, such that the coefficients cj become real numbers. 

Generally, constants cj and ζ are depending on quantum numbers n, m and l. For simplicity reasons, this dependency is 
not reflected in the respective indices of these constants. 

The first derivative of (133) reads: 
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The second derivative of (133) is: 
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In equation (131) the terms representing the potential energy of the electron can be approximated by a 
polynomial of degree P, which is divided by r: 
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where 1−≤ JP  and R∈pb  

At the non-relativistic limit (136) simplifies to: 

(137) ∑∑
=

−

=
=≈++−

P

p

p
p

P

p

p
pCMMz rbrb

r
EEEE

0

1

0

2 1
2
1

, where 1−≤ JP  and R∈pb  

Approximations (136) and (137) probably have a limited convergence radius, no matter how large P is made and how 
the coefficients are chosen. However, for a given closed interval of radius values the approximations can be made 
arbitrarily precise by choosing P and the coefficients appropriately. 

A suitable approximation can be found by first determining the range Prrr ≤≤0  of relevant radius values reflecting 

the radial extent of the electron’s wave function. For example, one can choose 0r  and Pr  in such a way, that the 

electron resides with 99.9% probability between these radii and, at the same time, the range is made as small as 
possible. 

Based on this range, additional nodes 1r  through 1−Pr  need to be determined between 0r  and Pr . The nodes should be 

chosen, such that the approximation error is minimized (e.g. via Chebyshev nodes). These nodes can then be used e.g. 
by Newton polynomials for interpolation. 
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Inserting (133), (134), (135) and (136) into (131) and multiplying both sides with nr λ22−  yields: 
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By neglecting the terms with potencies of r higher than J+β  the result can be written as: 
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where 0=ic  for 0<i   

and cutε  is the cut-off error produced by neglecting potencies of r higher than J+β  

The cut-off error computes as: 
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The left hand side of equation (139) equals zero for all values of r. This can only be true, if the coefficients of 
jr +β fulfill the following equation: 
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Analyzing the case 0=j gives: 

(142) 022 =− mβ , therefore m=β  

Inserting (142) into (141) yields the iterative formula for computing the coefficients from the value of c0: 
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Note, that the coefficients jc are all proportional to each other. Formula (143) stays the same at the non-relativistic 

limit. 

Equation (140) puts additional requirements on the coefficients cJ-P through cJ, which contradict the requirements of 
equation (143). Therefore, the polynomial approximation of the radial wave function with finite J cannot be made 
precise. 

The approximation error becomes minimal, when the last coefficient cJ is zero, which is the case only for the 
eigenvalues of ξ . Therefore, this defines a method for determining the eigenvalues. 

Alternatively one could determine the eigenvalues by using the original Klein-Gordon equation (109) as a measure of 
error: 
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At the non-relativistic limit one would use the Schrödinger equation (110) as a measure of error: 
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The function ( )Er ,δ  is approaching zero for all values of r only at the energy eigenvalues E . 

The value of coefficient 0c  can be determined from ζ  by normalization of the wave function R. 

Combining (121), (133) and (142) leads to: 
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The normalization condition (118) requires: 
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That means, one has to scale all jc  proportionally, such that (147) yields the value 1. 

3.12 Total Binding Energy 

One could naively assume, that the total binding energy BE  of a CP is the sum of the energies of all electrons plus the 

nuclear self-repulsion energy: 
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, where iE  is the energy eigenvalue of electron number i 

Unfortunately, this approach would count the electron-electron interaction energies eCE ,  and ME  twice, because the 

electrons are interacting with themselves. 

Instead, the following method will be used for computing the total binding energy: In the first step, the energy 

eigenvalues iE  will be decomposed via the radial Klein-Gordon equation (109) to the expected values of each energy 

term therein. Secondly, the expected values containing the interaction energies eCE ,  and ME  in a non-quadratic form 

will be divided by two and the expected values containing these interaction energies in a quadratic form will be divided 

by four. Finally, with this adjustment, the corrected energies iE
~

 will be reassembled via the same Klein-Gordon 

equation. 

The total binding energy of a CP (in units of αhE ) then computes as: 
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 is the corrected energy of electron number i 
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Multiplying (109) by rR*γ , using (101) and expanding the squared parenthesis provides: 
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Integrating (150) over all radius values and using (118) transforms it to an equation of expected values, thereby 

decomposing iE : 
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and so on. 

Dividing the expected values in (151) containing the interaction energies eCE ,  and ME  in a non-quadratic form by two 

and dividing the expected values containing these interaction energies in a quadratic form by four yields the corrected 
energies: 
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At the non-relativistic limit  the computation of the total binding energy is simpler. Multiplying (110) by rR*  and 
expanding the squared parenthesis provides: 
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Integrating (160) over all radius values transforms it to an equation of expected values, thereby decomposing iE : 
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Hence the corrected energies at the non-relativistic limit become: 
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3.13 Grouping, Orbital Occupation, Self-Consistent Field Iterations 

The electron configuration of a CP consists of many orbitals, which are characterized by the quantum numbers n, m and 
l. According to the Pauli exclusion principle each orbital can only be occupied by a maximum of two electrons (one 
with spin up and one with spin down). 

There are too many electrons in a CP for computing all occupied orbitals individually. Instead, ranges of orbitals with 
contiguous values for l are grouped together. Within a group all orbitals have the same quantum numbers n and m. 
These orbitals of such groups differ in quantum number l. The arithmetic mean of the quantum numbers l represents the 
group during computation. 

The most simple approach is to let each group contain the same number of orbitals. On one hand the groups should be 
small enough to achieve a fine spacing in the electron energies (for accuracy). On the other hand the groups need to be 
coarse enough, such that computation time becomes affordable. 

Equations (112) and (113) are computed by letting the summation run over the occupied number of groups. Each 
summand is multiplied by the number of electrons it represents. 

For ground state computations the occupation should start with the lowest energy. It should progress to groups with 
successively higher energy until the targeted number of electrons “found their orbital”. 

Equations (112), (113) and (143), as well as the occupation process are depending on each other in a circular manner. 
Thus they can be computed only iteratively  until reaching self-consistency between eigenstates, potential and 
occupation. 

Within each of these SCF-iterations (self-consistent field iterations) there is a need for sub-iterations: 

According to (98), 0, (112) and (114) the local Lorentz factor γ  and the potential energy term eCE ,  are mutually 

depending on each other. The sub-iterations are required for making γ  and eCE ,  self-consistent, while leaving the 

eigenstates unchanged. 


