3 CP Quantum Mechanics
by Lutz Jaitner, May, 2016 through August, 2017

3.1 Basic Assumptions
Modeling of CP is based on the following basic agstions:
(1) CP contain ensembles of atomic nuclei densely lingth a long and very narrow channel.

(2) The distances between the nuclei are so smallathalectrons bound to these nuclei are delocdléeng the
channel. In other words: Even in their electronigund state CP don't consist of individual atomB. i@ther
form a quasi-one-dimensional plasma (this could bksseen as a metal).
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Figure 3 Basic model of a CP. The CP similarly extends &l#ft and to the right of this picture

3.2 The Cylindrical Model of CP

The shape and quantum mechanical state of CP cavelyecomplicated. In order to obtain a simple duem
mechanical description of CP, the following simightions are used, which will subsequently be ddltee cylindrical
model of CP":

(3) The CP is perfectly straight and cylindrically syetnic, i.e. it is not bent to rings, helices etbeTCP is
oriented in parallel to and centered on the z-akibe modeling cylindrical coordinate system.

(4) The CP has the IengtE and contains a total nuclear chafgen its core zone (explained below).

(5)  The electron wave functions of the CP are confinetie interval0 < z < L.At z=L these wave function
are continuously extended to their value and gragiez = 0, as if the CP were rings. However, this is meant
to describe only theircular boundary conditiorof the wave functions az = L , not the shape of the CP.

(6) No external field is applied to the CP.

(7)  Ajellium model is used for the spatial distribution of theclear charge. This means, the positive charges of
the nuclei are modeled as a uniform "positive jellgckground, rather than point charges with distarin
between. The nucleic charge density is assumed tmbstant in axial and azimuthal direction, baleipends
on the radial distance.

(8) The jellium is modeled differently in the core zaam@ in the halo zone. The narrow core zone isimvitie
reach of the electron wave functions. The diffual®zone is outside the reach of the electron vianetions.

(9)  The nucleic charge distribution of the core zonedgleled by means of a two-dimensional normalitistion
in radial direction. The fraction of nuclei residim the core zone, as well as the standard dewiadire to be
determined by variation, such that the total en@fge CP is minimized.
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(10) Itis assumed, that the halo zone consists oféaieh having one positive elementary charge. Thelange
distribution of the halo zone is modeled, such thatpositions of the ions are in equilibrium wiitie electric
potential of the CP.

(11) The CP is assumed to reside in a vacuum. Interaofithe CP with surrounding matter is thus negléct

(12) Only stationary states are modeled, as the gaaldsscribe the ground state of CP. Consequehtymodel
assumes there is no electron scattering, i.e. ther@ momentum transfer between electrons andubiei.

(13) For computing the repulsion energy among the nuskeirt-range corrections to the jellium model hiovbe
made, which account for the granularity of the eaclcharges. In case the CP contains a mixturdfefeht
sorts of atomic nuclei, only the mean nuclear chasgaken into account for the corrections indbee zone,
rather than the individual nuclear charges.

(14) The time-independent Klein-Gordon equation is Usednodeling the electron wave functions, thereby
neglecting the magnetic moments of electron sfihs.Klein-Gordon equation is taking care of thgéar
relativistic effects occurring in CP, e.g. the mdsfect stemming from the very high binding enesfthe
electrons. (Clearly, the Dirac equation would beeradequate for modeling CP. However, the involved
complexities of such approach are avoided here.)

(15) The magnetic field of the azimuthal electron oristaeglected.
(16) Magnetic field from nuclear spins is neglected.

(17) The electron wave functions are modeled in anisdrame of reference, where no magnetic fieldrisated
by any collinear movements of the nuclei. This difigation amounts to an approximation in cases nshbe
nucleic velocities are position dependent.

(18) The multi-electron system is approximated by conmgué collection of one-electron orbitals, whereagh
electron orbital is subjected to the mean elegiiential and magnetic vector potential createthkytotal
charge density and total current density of aleottccupied orbitals and the nuclei. The Pauliesion
principle is used for determining orbital occupatmf the ground state. Exchange and correlatiengéas are
neglected.

(19) Quantum field theory is not engaged. Particle caminbnserved. Eigenstates are excluded as sotubibtine
Klein-Gordon equation, where the corresponding ®targy eigenvalue (including the electron’s exstrgy)
of the electron is negative.

(20) Only bound eigenstates of the electrons are coregigée. the total energy of an eigenstate hégtiess than
the electron rest energy (i.e. the sum of the figlesnergy and the kinetic energy has to be neghpti

3.3 The Klein-Gordon Equation of a CP

Initial calculations of a CP with the Schrddingeguation have shown, that the resulting binding gyner the electrons
would potentially exceed the rest energy of thetedes by orders of magnitude. These results wiserd in light of
special relativity, because the mass defect pendbalectron should never exceed twice its rest mBissrefore, a
Lorentz-covariant quantum mechanical equation sohitely required to model CP.

Generally, the Dirac equation is regarded as tleecbLorentz-covariant equation for modeling fesns, especially
when the effects resulting from the particle’'s sfgnof concern. Unfortunately, the Dirac equatiawalves 4-
component wave functions and the solution of fooupted differential equations, resulting in sizeabiathematical
and computational efforts.

Assuming that the electron spins have only minéeat$ on the binding energy, charge density, ctirdemsity and
other observables, the Klein-Gordon equation pmwié Lorentz-covariant alternative to the Dirac adigm for

modeling the electrons of CP. At the non-relativigimit the Klein-Gordon equation is equivalentttee Schrodinger
equation, while both equations share the deficiarfayot modeling the spin.

In relativistic electrodynamics with so-called mnmral coupling, the sum of the kinetic energy andgbtential energy
of an electron moving in a static electromagnetiteptial is:

(1) E= (y—l)mec2 -ed = \/(cf) + eo&)z + mezc“ - mecz —ed , where€is the elementary chargejs the
speed of light® is the electric potentiaIA is the magnetic vector potentig) is the electron’s momentum,

IM,is the electron rest mass apdis the Lorentz factor
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Therefore:

— 2 v R —
(22) (E +ed + mecz) = (ymecz) = (cp + eoﬁ\)2 +m>c*
All formulas are written in Sl units, unless oth&@vnoted. Throughout this document, energy symisdls a bar on
top (e.g. E ) denote, that the energy is measured in Joulerggreymbols without a bar on top denote, that thergy
is measured in units of the Hartree energy dividgdthe fine structure constarEh/a' (90), i.e. the energy is a

dimensionless quantity in the respective formulkeWise, other symbols with a bar (e.d., jz) are in Sl units,
while its counterparts without the bar are in natunits (i.e. dimensionless).

By quantizing the momentum via the del operafoE —iZi[] and applying both sides to an electron wave foncti

W, equation (22) transforms to tiséationary Klein-Gordon equation of an electron ina static electromagnetic
potential:

(23) (E+ed+mc?fw=(mcfw= [(— incO + eo&)2 + mezc“] W, where

#i is the reduced Planck constant

Due to simplification (19) ¥ is called here a “wave function”, rather than adgtum field”.

The term E + meC2 represents the total energy of the electron,the.sum of its rest energy, potential energy and
kinetic energy. Usually the Klein-Gordon equatisnwiritten, such that the total energy is soughthaseigenvalue of

this differential equation. However, this documeéeviates from the customary approach. Insteadgqtizetity E is
sought here as the eigenvalue (both approachesjairelent in their results).

-

In quantum mechanics a multi-electron system igemdly described by a single wave functid#(ﬂ,fz,...rN)

depending on the positions of tié electrons. The multi-electron wave function is algu formed by a Slater
determinant (or a linear combination of severate3laeterminants) to ensure anti-symmetry and tndi Rxclusion
principle.

However, the number of electrons in a CP can exd@& which renders a Slater determinant entirely irfical to
compute, because a program cannot handle equatitms.g. 16° positions and compute determinants of this size.

According to simplification (18) a rigorously singplapproach is used here for modeling CP, requisinly moderate
compute power:;

So, instead of using a multi-electron Klein-Gordmuation describing the pair-wise interaction betwi electrons,
the cylindrical model usedN single-electron Klein-Gordon equations with N wave functions W(F), each
describing a single electron in theean potential of all other electrons and the nuclei.

Of course, this is merely an approximation. Fomepie, the approach doesn’'t account for the exchangegy and the
correlation energy usually deemed important in gquarchemistry.

At first glance this looks still challenging to cpmte, because there ald Klein-Gordon equations to be solved.
Fortunately, large numbers of these equations eatbmputed in groups, because they produce néerlgyame charge
density distributions and current density distribns.

Expanding the right side of (23) and usiEbDE\ =0 (Lorentz gauge in the static case) yields:
(24) (E+ed+mc?fw=(mcfw= (— h’c’0? - 2ihe A + €C’ALA + mezc“)LP
According to simplification (14) and (15) the matiadield of the electron spins and of the azimltinavement of the

electrons is neglected. Thus the only source ofnthgnetic field is the current carried by the el@t$ moving in z-
direction. Therefore, the vector potential is evergre oriented in z-direction:

(25) A= Ag
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The Laplace operator expands in cylindrical coatéis as following:

»_10 0 1 9° ? _ o . _
(26) 0= _0_ '00_ +_26¢2 +F , Wherep is the radial distance from the z-axsis the azimuth and
pop\ dp) p z

Zis the coordinate of the z-axis

Inserting (25) and (26) into equation (24) and diivjj both sides by2mecz is resulting inthe stationary Klein-
Gordon equation of an electron in the mean potentiaof a CP’s all other electrons and the nuclei

—H2 2 2 2 A2
(27) { ! {11([,5} 1a_+a_+2%ig__eAz}

om | pop\"op) pPog® o2 " h oz W
2/ = 2 2

mg(Erer el
2 m.C 2

With simplification (6) the electric potentia® is depending solely on the electron charge derﬁg&p) and the
nuclear charge densit@, (,0) The magnetic vector potentid, is solely depending on the electric current degnsit

jz(,o). The electron charge density and the electricecirdensity are derived from the modulus squar@fther

electron’s wave functions. This approach kemilarities with the density functional theory (DFT) used in quantum
chemistry modeling, except that the exchange anetledion energies are not accounted for. Howether jnfluence of
the magnetic field on the co-linear electron-el@etinteraction is maintained and the Pauli exclugidnciple will be

obeyed during orbital occupation.

3.4 Boundary Conditions for Solutions of the Klein-Gordon Equation

Care must be taken according to simplification (iftthe total energy E+ meC2 of an eigenstate is always
positive, therefore:

(28) E>-mc?

Requirement (28) can be fulfilled by excluding eigi&tes with a negative total energy as solutidtiseoKlein-Gordon
equation.

According to simplification (20) only bound eigeatsts are considered. Therefore the wave functioplide must
disappear at infinite radial distances:

(29) lim ¥(p)=0

By definition of a bound state the total energyhef electron is less than its rest energy:
(30) E +m,c® <mc?, thereforeE <0

Combining (28) and (30) yields for bound states:
(31 -2mc’<E<0

For computing observables the Klein-Gordon elects@ve functions according to [10] have to f@rmalized such
that:

@2 1= =[[[ yw[dr
RS

However, when computing the current density (oatexl observables, like the electron velocity), bag to normalize
the wave functions via (32) by settipg=1.
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3.5 Observables of the Klein-Gordon Electron Wave Function

Generally one can compute an observdDlgrom the Klein-Gordon wave functiord as following:

(33) O= j”y(f)‘-l’*(S‘-Pdf , where W’ is the conjugate complex &% and  is the local Lorentz factor
R3

According to [10] thdocal Lorentz factor computes as:
\_ E+ed(f
@4 pr)= —2() +1
m.C

The factor ) in (33) can be understood by special relativistite dilation: An electron statistically spendséyactor
of ) more time in areas of high velocity, because ithe in the electron’s frame of inertia elapses gpthan the time

in the frame of inertia of the observer, who measuhe observable. Therefore, these areas haveuweighted higher
by a factor ofy during integration.

According to [10] thevolume charge density distribution of electron numier i in a static electromagnetic potential
computes as following:

(385 O, = —eyi|LIJi|2,whereyi is the local Lorentz factor at the position@f

e,

Summing this up for all electrons of the CP is Hasgi in:
x 2
(36) T, =-e) y|¥|
i=1

According to [10] thecurrent density distribution of electron number i in a static electromagnetic potential
computes as following:

(37) j:r_‘nj[ I;(‘P oW -wow, )}

Summing this up for alN electrons of the CP provides:

i=1

(38) j—fZ[ ';l(w W -wow )}

Using product ansatz (55), modulus square factiioizg57) and ¥, -solution (61), thez-component(in cylindrical
coordinatespf the current density (38) in a CP computes as:

@ J,=_°-1 AL
* m4&gl 2 ez oz

-e
Z[hk,‘q’p, ] wherefik; is thez-component of the electron’s momentum
27meL =

When using (37), (38) and (39) for computing therent density, one has to normalize the wave fonstia (32) by
settingy =1.

When (36), (38) and (39) will be used for determinihe electric and magnetic potentials in the tcl8brdon equation

(27), the electron numbeiis incorrectly exposed also to its own potenti#dwever, this error is quite small, if the CP
contains very many electrons.
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The expected value of tlwairrent in z-direction carried by all electrons of the €&h be computed by integrating (39)
over all radius values and azimuth values:

@o) (1,)=["["3,pdpdg =%§K

The expected value of thedectron group velocity’'s z-componeniaveraged over alN electrons of the CP) can be
computed from the z-component of the current:

(1,)L

, whereL is the length of the CP
€

41) (v,)=

The z-component of thivcal group velocity of an electron can be computed by dividing theomygonent of the
electron’s momentum by the relativistic electrorsmm, :

__ in oW 0w L ik
(42) Vz,i(lo)_ 2y(,o)miwi o7 W sz_y(,o)me

Note, that in the relativistic case the momenturoosstant irp-direction, whereas the velocity is dependingpovia
the local gamma factor.

According to [10] theexpected value of the electron orbit radiugor eigenstates of equation (27) is:
[~ 2 2
“3) (0)=] He)w p’do

3.6 The Electromagnetic Potential of a CP

The electric potential of a CP splits as follows:

(44) D =& +P,, whered, is the electric potential of the nuclear jelliuscarding to simplification (7) and

@, is the electric potential of the electrons

As a tool for computing the electromagnetic potdrtie following geometry is analyzed:

A sample charge at distanpefrom the z-axis (origin) and azimuih shall act as the point of measurement for vector
potential A, and the electric potentiat®, and @, .

The following figure illustrates this further:

do
charge -~ fx
density __——= N
[y

element .-~

sample
charge

/

L
- “origin

p
Figure 4 Scheme for computing the electromagnetic poterfiak shows a cut perpendicular to the z-axis.

From the geometry of Figure 4 it can be concluded:
(45) c=p'cosp
(46) h=p'sing
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@7) D=y(p-cf +h? =\(o- p'cosp)’ + p?sin’ ¢ =/ p ~2p)pcosp + p?

The following figure shall illustrate the geomeinyz-direction:

sample___——*
charge
charge
uniform line D D density
of charge element
z
=
: : dz— = '
z=-Ll2 z=0 z=L2

Figure 5 Scheme for computing the electromagnetic poterfiaik shows a cut in parallel to the z-axis.

From Figure 5 it can be concluded:

(48) D'=+Z+D?

Figure 5 shows an infinitesimal thin line of chamdending fromz = —E/Z toz= E/Z. This line is in parallel to
the z-axis. The volume charge denﬁ)(p') is constant along the line. An infinitesimal chadgnsity element with a
volume of p'dp'd@dz contains a charge of:

49) dQ=a(p)pdo'dgdz, where
s0) T(0)= [ﬁn (o) + ﬁe(p')], i.e. the sum of the nuclear charge density aactlbctron charge density

The electric potential at distance D from the iitéisimal line of charge and at axial positigh=0 computes as
following:

01 ct2dQ 1 N gl L2 1
(51) dqv)(D)_4—n£0 _L/ZF—Z—%U(p)pdpd¢L ﬁdz
L/2+(C/2f +D?
D

1
== o(0')pdpdgl
anoa(p)pp in

Inserting (47) into (51) and integrating oygrand¢ vyields the contribution of the entire CP to #ectric potential
(in Lorentz gauge, static case):

00

[[a(0)c(0.0)pdp', where

62 @(p)=
0

o clog) [ ot 2 e

is the geometry integral

By replacing 5(,0')/50 with /Jojz(p') in (52) provides the z-component of the CRiagnetic vector potential(in
Lorentz gauge, static case):

— ﬂ © = U U I U
6 Alp)=22[ 3.(0)cle.p)0d0"

wheregg is the vacuum permeability anijz(p') is the z-component of the current density

Based on the circular boundary condition (5) thecteic potential (52) and the vector potential (54¢ made to be
constant in z-direction. This approximation is riegd for maintaining the full cylindrical symmetof the model.
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The radial and azimuthal (see simplification (1&))mponents of the vector potential and the curdemisity is zero
everywhere. Due to simplification (17) the nuclgdlium is not contributing to the current density.

Note, that lim @(p)ZO and lim AZ(,O) =0. Equations (52) and (54) therefore can be usediéoermining the
peo p oo

binding energy of electrons to a CP without engggimon-zero reference potential.

3.7 Product Ansatz
The followingproduct ansatzis made to factorize the electron wave function:
55) W(0.9.2) =W, (0)¥,(#)¥,(2) orinshort W =W W W,

The wave function of a single electron is suppasetde normalized and it represents a stationatg.sta azimuthal
direction and in axial direction the electromagao@ibtential is constant. Therefore the modulus lmoaLP¢ and ¥,

is also constant:

1

| 2 oy
(56) |¥,| -L|J¢L|J¢_5Tand|wz| =W, ==

Hence themodulus squareof the entire wave function factorizes as:
. . x 1
(57) |k|J|2 = qu (Io)qu (p)LIJ¢ (¢)w¢ (¢)qu (Z)Lpz (Z) = _—‘wp (10)(2
Thenormalization criteria (32) could then be carried out as:
68 1=|w]=["Vo)w, (o) mo

3.8 Separation of the Klein-Gordon Equation

With product ansatz (55) the partial derivativeshef wave function are:

hd Y
(59) a—q’,=W¢LIJZh anda—w= led ¢ anda—w:q—’ W¢%
0p do op ° *dg 0z 7 dz

Inserting this into the equation (27) and dividwmih sides byW! yields:

2 dw d?y 2 2
oo - | L dfdv), 1 2¢+idwz+2egidwz_ezﬁz\z
2m,| ¥, dp\" do ) p*¥, d¢* W, dZ AW, dz &
2 (= 2 2
_mc’(E+ed ) mc .
2 | mc 2

Remark for the mathematical purity: The division ¥ is done here out of convenience. It could have fpestponed
to a later step without affecting the end resulthsthat wave functions (which can have zeros) nekiew up in the
denominator.

The followingwave function is solving thez-dependent partof (60):

(61) W, = \/%eikz , wherek OR

Due to simplification (5) the energy eigenvalues quantized to a discrete spectrum, because wawbeark has to
meet the following boundary condition:

(62) k :IZTH, wherel 0Z
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Integer | acts as araxial quantum number here (This quantum numbérshould not be confused with tHein
Laplace’s spherical harmonic functidﬁm(9,¢) used for modeling the electrons of atoms).

The followingwave function is solving thep-dependent partof (60):

63 W, =, /ieim”’ , wheream[Z
27T

Integerm s theazimuthal quantum number.
Inserting (61), (62) and (63) into (60) provides tadial Klein-Gordon equation of a CP:
2
©4) ] _1d pi +ﬁ2 (ﬂ eAzj _mgc® E+e<15+1 mgc* W, =0
2me Yo, d,o do) p 2 m.c? 2

At the non-relativistic limit the termX = (E + ecb)/(mecz) approaches zero. By using only the first two teafthe

Taylor series of(X +l)2 about X =0 one can approximate:

65) (x+1f =1+2x

With this approximation equation (64) becomesrtittal Schrédinger equationof a CP:

| 1d d) m 21t , e —
66 — [+ + E-ed¥, =0
) Zmi pdp(pdp] P ( AZ” ?

The radial Schrédinger equation (66) is based oa ribn-relativistic Hamiltonian for an electron in an
electromagnetic field with minimal coupling:

(67) ﬁzﬁ—r_ihDjLe& _e(p:ﬁ_ff”fe& -
2m, 2m,

The eigenstates of differential equation (64) @) (provide the radial wave function‘st. The eigenvaluesE of

bound states are discrete, i.e. they are countgbke principal quantum numbé; the azimuthal qguantum numbier
and the axial quantum numblerTheprincipal quantum number N = 1, 2, 3, ...is defined here analogous to the
hydrogen atomn equals one plus the number of node lineskyf¥, , thereforen 2 |n"| +1 (In a stricter sensed,

has no node lines. However, a standing wave ofstwaerposed azimuthal wave functions, differing anlyhe sign of
guantum numbem, hasm node lines.)

Principal quantum numbédl has no explicit representation in (64) or (66)irorany of the following formulas. It is
useful however, as an ordering scheme for compunatiresults.

One has to keep in mind, that the eigenvalﬁesthe eigenstateHJp, LIJ¢ andW¥,, as well as the quantum numba#rs

m andl are generally distinct for each electron of the @Rorder to ease readability, the electron nunasean index
has been omitted from these symbols, unless thexiisdheeded in a summation.
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3.9 The Jellium Model of the Nuclear Charge Distribution

According to simplification (7) the charge of thactei is treated as if it were a uniform "positijedly" background,
rather than point charges with distances in between

The nuclear charge density distributicn, (p) of the jellium has cylindrical symmetry, i.e. ibesn’t depend op and
Z It is a function of the radial distanpe

According to equations (44), (50) and (52) #hectric potential of the nuclear jelliumis:

1
27E,

©8) ®,(0)=5=—] a.(0)G(0.0)pdo

An infinitesimal charge density elemedt, (p')p'dp'd¢dz brought into potentiad,, has the potential energy:

(69) dE, =7, (0)d,(0)odpdgdz

Integrating (69) over the entire space and dividimgresult by two yields theuclear self-repulsion energy

— 2
(70) E,=-E,+= j j j p)pdpdgdz= -E, +nLj @ (0)odp . where
EG is the granularity correction (78)._7.n >0 and EG >0

The division by two in (70) takes care of the falogt the jellium is interacting with itself andethepulsion energy must
not be accounted twice during integration.

Equation (70) needs to be corrected Eg in order to account for the granularity of the leac charges. For this
purpose the following approximation is made:

Regarding simplification (13) the nuclei are assdrtiehave a mean charge 4f,. The mean charge is determined by

the average of the nuclear chargésof the atomic sort weighted by the fractih< F <1 of the respective atomic
sort:

n n
(1) Z,= z FZ Wherez F =1 andnis the number of different atomic sorts of the tuiz
0 0

The volume occupied by one nucleus would be:

(72) V==
g 3

n

Hence the radiuR of a sphere with volum¥/, would be:

(139 R=g >
4T o,

Assuming that the charge densiy, is constant withiV, , the electric potential of the sphere is:

= 3
&5 = 1 % r>R
3 r 4mE, v
74y @(r)=1 _ _
s (a2 —1?)= E22) S
6¢, 6s,| \ 4o,
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The self-repulsion energy of the jellium within spaV/, (i.e. for caser < R) would be as following:

75 Elz,)= %j”@l(r)dQ = %j;joj::o rioﬁnqﬁl(r )rédrsingdédg = 2nﬁnjoR¢1(r)r2dr

— — 2
= ZIﬁnIRﬂ(3R2 ~r?)r?dr = 2 (3R2J'Rr2dr —er“drj
0 Bg, 3g, 0 0
2
- L= 1 S e
5¢, 3 o5&, \\4mr

In reality El i.e. the self-repulsion energy of a single nusjds zero. This is, because a nucleus doesn't iesed.
Therefore the self-repulsion energy (70) needstsubtracted by (75) for each nucleus in the CP.

1 1
An infinitesimal cylindrical zone of a CP with radi o, _Edp Sp<p +§d,0 has the volume:

(76) dV =27t pdp
The number of nuclei residing in volurd®/ is:

dv —a7.(p)
dN =— =271 —n\"/
(77) v 7L 7 pdo

1

Multiplying (77) with El and integrating ovep yields thegranularity correction of the core jellium’s self-repulsion
energy:

(78) EG — 27t jow[wn (p)eZ'anmp

5, AT

According to simplification (10) the jellium’s chge distribution of thehalo zoneshall be modeled, such that the
positions of the cations are in equilibrium witte thlectric potential of the CP. This is the eqpuiilim of two pressures
resulting from Coulomb forces: The repulsive puesshetween neighboring ions and the attractivegure from the
CP’s electric potential (52).

Each ion has the following radius:

(79) R=3 i_i
\/ 4o,

A sphere with this radius has a surface area of:

(80) A=4/R’
The repulsive Coulomb force between two neighbos is:
1 €
®1) |Fl=——=
41, R

As an approximation it is assumed that the Couléonbe component perpendicular to the surface 8@pi$ constant
over this area.

Therefore, the Coulomb force is resulting in a pues of;
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An infinitesimal cylindrical zone (76) contains thlearge:

(83) dQ=27t7,0dp

This charge is attracted by the CP’s electric paé(b2) with the following force:

@4 |F|=dQlE=dQ-De(p) = Lagpd d d(jpj 7(p)G(p.0)pdp

Force (84) is perpendicular to the surfad. of the cylindrical zone (76), thus creating arrémental pressure of:

Fl_1 »
(85) dRy(p)= ,mdp )G(o.0')odp

27t 27750 d,oJ-
Integrating (85) over the radius yields the pressirradial distancg" :

@) Po")=—7, (p){—p jowﬁ(p’)G(p,p')p'dp’}pdp

2TE, 7P
Pressuresd’, and P, have to be identical in order to maintain an éliiim of the repulsion between neighboring ions
and the global attraction of the jellium by theatlie potential of the CP, as is required by siffigdition (10).
Therefore:

(87) 3ﬁa p)=[a, { [ (p')G(p,p’)p’dp'}pdp

The ion charge density distribution of the haloedmas to be computed iteratively (by variationghsthat equation
(87) becomes approximately true for all valye$ of the halo zone. During these computational ftens the electron

wave functions should be kept constant, because thg@resumably very little dependency betweerethetron charge
distribution and the nuclear charge distributionhef halo.

According to simplification (9) thewucleic charge distribution of the core zones modeled by means of a two-
dimensional normal distribution in radial direction

_ 1 2
8 7,(0)= 21 rex —%j,

where S is the standard deviation in met€}is the nuclear charge in the core zone

The distribution function (88) is normalized, sutiat the integral over all space (in Cartesian dimates) yields the
total nuclear charge Q of the core:

@ [[fa.e)=]__| . [ ;;]dZdWX:Q, where 0% = X + y?

0L272_S

The fraction of nuclei residing in the core zong wall as the standard deviation, are to be detehiteratively (by
variation), such that the total energy of the CPmimimized. During each computational iteration thlectron
eigenstates have to be recomputed, as they strdegisnd on the nuclear charge distribution of tire.c
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3.10 Transformation to Natural Units
In the following text théHartree energy will be used as anit of measure for energy It is defined as:

2
e’ 2 2
90) E, = = =mc°a° = 27211V, wh
(90) h m 5 me(4 Jlj m, where

2
_VEN _ T = 52918pm is theBohr radius and

(93) —=

The following equation definesraference radius

=%
94) p, = T where
/1I"I

1
(95) /ln = QI is thelinear nuclear charge densityin the core zone in natural unit) is the nuclear charge in
€

the core zone and

(96) L= is theCP lengthin units of the Bohr radius.

&

The definition of the reference radius was craf®d;h that the relative radial extent of the etmcttorbits at the non-
relativistic limit becomes independent of the lineaclear charge density.

Therelative radius is defined as:

@ r=L£
0

Thevolume charge densityin natural units is defined here as:

99) J 5332

Additionally, the following quantities are definbére:
(100) E = E/ Eh , i.e. thesum of the potential energy and the kinetic energgf the electron, which is

functioning as thenergy eigenvalueof the Klein-Gordon equation

(101) Ec =E¢,+tE.. = -e®d/E, = -ed,/E, —ed,/E, , i.e. thepotential energy term related to the
Coulomb potential of the electrons and the nuclei as seen by atrete(negative sample charge)
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27
(102) E, = -~ is theaxial momentum of the electron in natural units. The related td:_:mz/Z is theaxial

kinetic energy of the electron in natural units

(103) E, =- ecaAZ/Eh is themagnetic vector potentialin natural units. The related termsE,E,, and

= 2/2 are themagnetic electron-electron interaction energynd the so-callediamagnetic energy
respectively

(104) E, = En/Eh , i.e. thenuclear self repulsion energy
(105) E5 = _G/Eh , I.e. thegranularity error of the nuclear jellium
Theradial wave function in natural units is defined as:

(106) R=p,W¥W

(107) y 2[E E )] +1 is thelocal Lorentz factor computed from the energies in natural units

Dividing both sides of (64) b)Eh, using the product rule of calculus and substitutvia (93), (96), (100), (101),
(103), and (102) is resulting in:

2 2 2 2 2
o |- 9 A d A Lo g (E—Ec+i2j + Ly =0
2 dp® 2p d,o 2 p° 2 2 a 2a

Substituting (97) and (106) in (108), using theation R" and R" for the first and second derivative Itoof radial
wave function R and multiplying both sides of the equation i} yields theradial Klein-Gordon equation in
natural units:

A A AmE 1 , az( 1)2 1
109) -*R'-"*R+|—>+=(E,-E,) ——|E-E.+— | + R=0
(109) 2 2r 2r? 2(2 ) 2 © @ 2a’

The Schrédinger equation(66) in natural units is:

(110) —iR"—iR% [ Aut? 1
2 2r | 2r? 2

~(g,-E, ) +EC—E}R:O

Thegeometry integral (53) can be expressed in natural units as:

2 \/_L/2+\/)l L2 /4+1"2 - 2r'r cosg +r?
\/r —2r'rcosp +r?

111) G(r,r')= j dg

Multiplying (36) with a03/e and using (57) and (106) yields thelume charge density in natural units

N
112) o.( /]” Zy, rR )|

|:1

Multiplying (39) with aos/(ec) and using (62), (92), (96), (102) and (106) yiefds current density in natural
units:

@13) J,(
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Multiplying both sides of (52) by- G/Eh and substituting via (97), (98), (101), (112) #h&0) provides th€oulomb
energy term

w10 ()= 2 b ar =2 [ Sy (IRE |- e - 1ot rvor

n

Multiplying both sides of (54) by— aedEh, substituting via (97), (99), (103), (106) and 3Lland using

Eolly = c? provides thanagnetic vector potentialin natural units:

ws) £,(0)=-27 2,006 rrar == [ [e, R (F] o .rrar

By dividing (43) by 0, and using (94), (97) and (106) teepected value of the electron orbit radiusn natural units
becomes:

(116) (r)= j: y(r)R r?dr

Dividing (70) by Eh and using (78), (90), (94), (98), (101) and (185 taking care of the fact, that the sample
charges are positive, yields thaclear self-repulsion energyin natural units:

(117) E, =~ —.[ rdr where E, >0 and

3’ 3
E; = ( Unz(r)Zm] rdr is thegranularity error in natural units,E; >0

5)I

Using (94), (106) and 0 theormalization criteria (58) in natural units becomes:

(118) 1=|R|= J' y(r)R(r)rdr

Thestandard deviation of the nuclear charge distributon in the core zone in natural units is:
S
(119) s=—
0

Multiplying both sides of (88) withaos/e and substituting via (94), (95), (96), (97) and 9] yields thenuclear
charge distribution of the core zondn natural units:

2 2
(120) 7, (r)= 2 -rj

27752 257

3.11 Approximate Solution of the Radial Wave Function
The followingansatzwill be used for approximating thadial wave function:
@21) R(r)=f (r)@xg(- &), where
f (r) is assumed to be a polynomial add] R is a tunable scaling factor.

The radial Klein-Gordon equation (109) has a secawldtion, which is linear independent of the solutgained by
ansatz (121). The second solution would be repteddyy the following ansatz:

122) R(r)=f (r)@xp(dr), whered OR?
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However, this second solution and all linear corabons with it were incompatible with boundary caimh (29).
Therefore, this second solution ansatz will noubed.

The first derivative of the radial wave functiod21) reads:
(123) R =(f' - )expl- &)
The second derivative of the radial wave functiisns
(124) R =(f"-24" + % ) rexp- &)
The value of{ can be determined by analyzing the asymptotic belér of the wave functionRat r — oo :

The electromagnetic potential (and therefore ttergntermsE. and E,, ) become zero, when the radius approaches

infinity. Also, the terms proportional td/r and l/r2 disappear at — o0, The Klein-Gordon equation (109) then
simplifies to:

(125) - AR +(E2 - a’E2 -2E)R=0
Inserting (122) and (124) into (125) leads to:
@26) A(- f"+2a' =72t )+(E2 - a’E? - 2E)f =0

Assuming functiorf can be approximated by a polynomial of finite @egrthe function dominates over its derivatives
atr — oo and therefore thexponential scaling factoris:

(127) { = \/%(EZZ -a’E? - ZE), whereE <0

n

The case ofE =0 does not apply here, because of simplificatior).(8ly the positive value of the square root is
valid here, because of ansatz (121).

Solving (127) for the energy provides:

(128) E :1\/EZ2 -7 +i2 —iz
a a’ a

Only the positive value of the square root is vhlde, because of boundary condition (31).

Equation (128) in conjunction with boundary cortiti31) has interesting consequences:

E, 1(_2, 1), . — o
(129) \//]_ <(< /1— E, +? , i.e. the scaling factdf is limited by means of the axial kinetic energytet
n n

low end and by the means of the rest energy atititeend

At the non-relativistic limit theexponential scaling factorcomputes as:

(130) { = )li(EZ2 = 2E) , thus E :%(Ez2 —)IHZZ)

n

Inserting (121), (123), (124) and (130) into radi&in-Gordon equation (109) is leading to:
A A 1
131) - f"+-2| 20 -~ |f'
o %17+ %(2 -4

2

Al Am? 1 zazl\/z , 1 1 Al

|2+ + (E,-E, ) ——| —.E,,-A{"+— -E. | +— - =0
2r  2r? 2(2 w) 2 laV ol a? ) 2a° 2
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For the non-relativistic limit the Schrédinger etjoa (110) is leading to:

2
(132) —/]2” f"+—= (2{ 1) (£+A”m - E,E,, +%EM2+Eij =0

2r  2r?

Solutions to differential equation (131) or (132nsist of eigenvalues df and eigenstates of polynomil These

solutions can then be used to compute the eigeesaltE and eigenstates &R of the radial Klein-Gordon equation
(109) or Schrodinger equation (110).

Function f(r) can beapproximated by a polynomialof I as following:
(133) f ZC r’1 for RON, andc; R
i=

The summation runs over a numkler1 of terms, depending on the desired accuracy oagipgoximation (in practice
J needs to be about 200 with 80-bit floating poinmbers for “reasonable” accuracy). The (generatjtrary) phase
of the (generally complex) wave functibtis chosen, such that the coefficie@tbecome real numbers.

Generally, constantg and( are depending on quantum numbier$n andl. For simplicity reasons, this dependency is
not reflected in the respective indices of thesestants.

The first derivative of (133) reads:
J _ 1
134 f'(r)=>.(8+ij),r"
j=0
The second derivative of (133) is:
J
@ss) £'(r)=2(B+i)B+ |-,
j=0

In equation (131) the terms representing the poteidl energy of the electron can be approximated by a
polynomial of degredP, which is divided by':

2
1 2 a’( 1 2 1 1 A
(136) E(EZ_EM) _7(5\/Ez _Anzz+?_ECj +_2_

- ibpr p_l’
p=0

20
whereP<J -1 andbp OR

At the non-relativistic limit (136) simplifies to:

(137) -EE, +;E vE, ~—Zb =Y b,r"*, whereP < J ~1 andb, OR

p=0

Approximations (136) and (137) probably have atiémiconvergence radius, no matter how ldfge made and how
the coefficients are chosen. However, for a givlesed interval of radius values the approximatioas be made
arbitrarily precise by choosinlg and the coefficients appropriately.

A suitable approximation can be found by first deti@ing the rangef, < r <1, of relevant radius values reflecting

the radial extent of the electron’s wave functiéor example, one can choos$g and I, in such a way, that the

electron resides with 99.9% probability betweens¢headii and, at the same time, the range is madsmall as
possible.

Based on this range, additional nodgghrought,_; need to be determined betwegnand I'; . The nodes should be

chosen, such that the approximation error is minéahi(e.g. via Chebyshev nodes). These nodes carbthased e.g.
by Newton polynomials for interpolation.
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Inserting (133), (134), (135) and (136) into (1ahy multiplying both sides with- 2r2//]n yields:

J
(138) z B+i)B+i-2c,rF +@1-2a)> (B+ i)k, - {Zr +m? +—Zb r””}ZC ATl =
-0

j nDO

By neglecting the terms with potenciesrdiigher thanf3 + J the result can be written as:

2 2 .
(139) Z{[ﬂﬂ ]C J{ {(1-2p-2j)- /]bo} i—l'/]_szcj—p—l}rﬂ "+e,=0,
=1

n
whereC =0 for i <0
and &, is the cut-off error produced by neglecting potesofr higher thanf +J

The cut-off error computes as:

P
(140) &, = { ( 1-28- ZJ) Zbo} rﬁﬂﬂ_%z z Jp—1rﬁ+j

n

The left hand side of equation (139) equals zeroalb values ofr. This can only be true, if the coefficients of
r A fulfill the following equation:

aov [+ 1 -nek, | ca-2-20)- 2 e, - 2 S .-

Analyzing the case] = O gives:

(142) B?-nt =0, therefore S = |n'1

Inserting (142) into (141) yields tligerative formula for computing the coefficientsfrom the value o€:

1 2] 2% .
(143) ¢, :W{ Z(@m+2j -1 )+—} s pzl - p_l},whereq =0fori <0

Note, that the coefficienta‘;j are all proportional to each other. Formula (1438ys the same at the non-relativistic
limit.
Equation (140) puts additional requirements onabefficientsCy.p throughCj, which contradict the requirements of

equation (143). Therefore, the polynomial approtioraof the radial wave function with finitd cannot be made
precise.

The approximation error becomes minimal, when thedst coefficientC; is zero, which is the case only for the
eigenvalues of¢ . Therefore, this defines a method for determininghe eigenvalues.

Alternatively one could determine the eigenvalugaibing the original Klein-Gordon equation (109)aameasure of
error:

A A
144) Olr,E)=-—"R"-—R
(144) O(r,E)=-2R =
N /]nm2+£(E _E )2_0'_2 1\/E2_/1(2+i_E 2+ 1 R
2r2 2% M 2laV ™ " a? ¢ 2a?
z_iRn_iRl Am_'_zbrpl /1(
2 2r 2t =
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At the non-relativistic limit one would use the &aflinger equation (110) as a measure of error:

2 2

2r 2r® 2
2 P 2
s ey A”T +>°Db e A g
2 2r 2r = " 2

The functioné'(r, E) is approaching zero for all valuesfobnly at the energy eigenvalués.

The value of coefficientC, can be determined from{" by normalization of the wave functionR.

Combining (121), (133) and (142) leads to:
J y
(146) R=Y c,r"" exd- &)
j=0

The normalization condition (118) requires:

2
[ [ J .
(147) 1=|R|= J'O y(r)R(r) rdr = J'O y(r)(chrm”j exp(— 247 )rdr
j=0
That means, one has to scale(z}llproportionally, such that (147) yields the value 1

3.12 Total Binding Energy

One could naively assume, that the total bindingrgyn E; of a CP is the sum of the energies of all electrolns the
nuclear self-repulsion energy:

N
(148) E; #E, + Z E. , where E; is the energy eigenvalue of electron nuniber
i=1

Unfortunately, this approach would count the elattelectron interaction energieE.C’e and E,, twice, because the
electrons are interacting with themselves.

Instead, the following method will be used for cartipg the total binding energy: In the first stahe energy
eigenvaluesk; will be decomposed via the radial Klein-Gordon atipn (109) to the expected values of each energy
term therein. Secondly, the expected values cdntaithe interaction energieEC’e and E,, in a non-quadratic form
will be divided by two and the expected values aihg these interaction energies in a quadratio fwill be divided

by four. Finally, with this adjustment, the commi:tenergieslgi will be reassembled via the same Klein-Gordon
equation.

Thetotal binding energy of a CP(in units of Eh/a’) then computes as:

N ~
(149) Eg =E, + z E, , where E; is the corrected energy of electron numiber
i=1

Lutz Jaitner, May, 2016 through August, 2017 -29 - The Physics of Condensed Plasmoids and LENR



Multiplying (109) by ;R*r , using (101) and expanding the squared parenthesides:

(150) V"“TR(— R -R)+yRr {

2 aZE 2
% + ainEc,n +a2EiEC,e - Ei + EC,n + Ecve} =0

2 _EE +1E,?
2

a’E’ a’E,
- 2 - 2C’ _azEc,nEc,e_

Integrating (150) over all radius values and usjhf8) transforms it to an equation of expected esuhereby
decomposingk; :

(151) E =(Ec,)+(Ecp) —% + sqr{(— (Ecn)=(Ece) + %)2 - < EC,n2> ~2(Ec,Ece) — < EC,e2>

5{ %Ef—EAﬁJ+%EK»%Em><Ewg}wmm

+

(152) <Er> = i<i(— ——j> —J. Vr)R(-mR'-R )dl‘ is the radial kinetic energy,

(153) <Ei2> =E’ isthe square of the energy eigenvalue,

2 2
(154) <E¢> = M<i> :ML @szr is the azimuthal kinetic energy,

2 \r? 2

2
1(2m
(155) E EZ2 = E(le is the axial kinetic energy,
(156) <EC,n2> = J.: Ecynzy(r)|R|2 rdr is the square of the Coulomb energy term frorotede-nucleus interaction,

(157) <Ecyez> = .[o Ec’ezy(r)|R|2 rdr is the square of the Coulomb energy term froratede-electron

interaction,
1 2 _1 o 2 2 . . .
(158) §<EM >—§J-O E,, y(r)|R| rdr is the diamagnetic energy term,

and so on.

Dividing the expected values in (151) containing ifiteraction energieEQe and E,, in a non-quadratic form by two

and dividing the expected values containing thateraction energies in a quadratic form by foutdgghecorrected
energies

4

(159) E <ECn>+@—%+sqr {_<Ec,n>‘<Ec'e>+i2]2—<Ec,n2>—<Ec,nEc,e>—<Ec'ez>
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At the non-relativistic limit the computation of the total binding energy is @en. Multiplying (110) by R'r and
expanding the squared parenthesis provides:

AR A AM 1 _, 1_,
160) —(-rR'"-R)+71 n__+-E‘-EE,+=-E,+E.—-E |=0
as0) AT R -R) ¢ R AT L e B lE R

Integrating (160) over all radius values transfoitts an equation of expected values, thereby ahpesing E; :

(161) E :<Er>+<E¢>+%EZ2 - EZ<EM>+%<EM2>+<ECVH>+<EC£>

Hence the corrected energies at the non-relatiVistit become:

~ 1 1 1 1
(162) E =(E)+(E,)+ B~ 2 E(Ey)+5(En’) +(Ecn) +5(Eee)

3.13 Grouping, Orbital Occupation, Self-Consistent Field Iterations

The electron configuration of a CP consists of marijtals, which are characterized by the quantumlrersn, mand
|. According to the Pauli exclusion principle eagbitl can only be occupied by a maximum of twoctdens (one
with spin up and one with spin down).

There are too many electrons in a CP for compulhgccupied orbitals individually. Instead, rangdsorbitals with
contiguous values fdr are grouped together. Within a group all orbitadse the same quantum numbarand m.
These orbitals of such groups differ in quantum berh The arithmetic mean of the quantum numbbeepresents the
group during computation.

The most simple approach is to let each group ootit@ same number of orbitals. On one hand thaggshould be
small enough to achieve a fine spacing in the mlactnergies (for accuracy). On the other handytbaps need to be
coarse enough, such that computation time becoffesable.

Equations (112) and (113) are computed by letthrgy Summation run over the occupied number of groHpsh
summand is multiplied by the number of electrongjitresents.

For ground state computations the occupation shstald with the lowest energy. It should progresgtoups with
successively higher energy until the targeted nurabelectrons “found their orbital”.

Equations (112), (113) and (143), as well as treupation process are depending on each other iit@ar manner.
Thus they can be computed ontgratively until reachingself-consistency between eigenstates, potential and
occupation

Within each of these SCF-iterations (self-consistiefd iterations) there is a need for sub-itaras:

According to (98), 0, (112) and (114) the local ¢z factor )y and the potential energy terrEC'e are mutually

depending on each other. The sub-iterations areirestjfor making )y and EC’e self-consistent, while leaving the
eigenstates unchanged.
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