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Abstract

This document describes a new theory of LENR bamedhe experimental and theoretical
findings of other researchers, such as Ken Shou[dérEdward H. Lewis [2], among others.

After decades of research on high-density chargsteis, ball lightning and LENR it turns out,
that Edward H. Lewis was right with his hypothegioms can enter a previously unknown state
of matter, in which they behave like ball lightnjremd which is an intermediate state of the LENR
reaction.

A guantum-mechanical model of this strange statmatter is provided by the author [3], which
will in the following be calledcondensed plasmoids (CP)”

In contrast to the quantum-mechanical model of dt@m, which is based on the spherically
symmetric electrostatic potential of the nuclets, quantum-mechanical model of CP is based on
the cylindrical symmetry of a very thin and verynde plasma “wire”.

In CP both, the nuclei and the electrons are moxapidly in opposite directions along the plasma
wire. This results in a strong electric currentotigh the wire, pinching the plasma thin via its
strong magnetic field.

The assumption, that the nuclei of the atoms axedfipoints in space (Born-Oppenheimer
approximation), is not adequate for modeling CPe Wave functions of all the electrons and all
the nuclei are largely delocalized in one dimension

The intrinsic magnetic field of CP leads to self@mization of their shape in complicated ways,
minimizing their energy:

Figure 1 Example of the self-organized shape of a condepkesnoid

CP are extremely dense along one spatial dimengmrch denser than ordinary matter). CP
enable nuclear reactions between the ions viagtetettronic screening of the Coulomb barrier.

The gamma radiation of nuclear reactions insideptaema wire is suppressed, because the dense
electron current in the plasma wire provides higingening of the dipole oscillation of excited
nuclei. This mechanism is analogous to a traveliage tube.
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1. Experimental Evidence of CP in LENR experiments

Via thorough electron-microscopic analysis of Kaib glow discharge cathodes I. Savvatimova and B.
Rodinov have discovered a multitude of strangessd2]:

Figure 2  Strange traces discovered by I. Savvatimova ariRidglinov at Pd cathodes
These traces can be understood by assuming thepased by CP ionizing the surface of the metal.

There is experimental evidence from Savvatimova iaddpendently from Urutskoev (later reproducedChy
Daviau et. al), that CP can reside for hours and da the remains of Ti wire explosions in wateror these
remains CP can emit as “strange radiations”, witigh leave peculiar traces at nuclear emulsions-8aX
films brought in proximity to these remains:

Figure 4 CP traces on X-ray film, presented at the EADSoeplim in 2010
by C. Daviau, D. Priem and G. Racineux, Ecole @atde Nantes

The above image from Ecole centrale de Nantes élagdh the author to understand, how CP self-orgafinggm
an originally linear form with open ends into asgd loop, where the intrinsic current flows backhe other
end.



Also, a wealth of experimental information on CR lh&en collected by Ken Shoulders [1] under expanrtai
conditions much different from typical LENR expedmns:

Figure 5 Left: Pinhole camera side view of CP in vacuum. TEmgth of the CP is approximately 0.1 inches.
Right: Impact of an accelerated CP on a targetaisarfKen Shoulders [1]

It should be noted here, that the respective astbbthe above experimental findings have drawiir ttyvn
differing conclusions, on what the observed objects It is beyond the scope of this document socudis the
plausibility of these conclusions.

2. The Cylindrical Model of CP
Modeling of CP is based on the followibgsic assumptions
(1) CP contain ensembles of atomic nuclei densely lingth a very narrow channel.

(2) The distances between the nuclei are so smallathalectrons bound to these nuclei are delocdlize
along the channel. In other words: Even in theac&bnic ground state CP don'’t consist of individua
atoms. CP rather form a quasi-one-dimensional @asm
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Figure 6 Basic model of a CP. The CP similarly extends ®ldft and to the right of this picture

The shape and quantum mechanical state of CP caerrpeomplicated. In order to obtain a simple quan
mechanical description of CP, the following simiphtions are used, which will subsequently be dafie
cylindrical model of CP":

(3) The CP are perfectly straight, i.e. they are not beerings, helices etc. The CP is oriented irajpelrto
the z-axis of the modeling coordinate system.



(4) Most electrons bound to a CP are moving in z-dioecti.e. an electric current is flowing in negativ
z-direction. This is the result of spontaneous swytmynbreaking, which occurs during orbital
occupation.

(5) The CP have length and contain a total nuclear chafgeResults will be analyzed for the limit
L —» oandQ — oowith charge densit;L/Q being held constant.

(6) The electron wave functions of CP are confinechanitterval0 < Z< L . At z = L these wave

function are continuously extended to their valnd gradient aiz = 0, as if the CP were rings.
However, this is meant to describe only the cincblaundary condition of the wave functions at
Z = L, not the shape of the CP.

(7)  No external field is applied to the CP.

(8) The positive charge of the nuclei is homogeneodslyibuted on the z axis. The width of the nuclear
charge channel is infinitesimal thin. (“homogendgpesarged, infinitely thin wire”).

(9) The Born-Oppenheimer approximation is broken dosvrtHe z-direction, but is used for the x and y
directions.

(10) For the purpose of computing the nuclear repulsizgrgy it is assumed that a CP contains two sbrts o
atomic nuclei with nuclear chargé€s andZ; in 50%-t0-50% mixture. These charges are assumed t
interleave along the z-axis. The total number afi@N is assumed to bdn + 2, with N being
integer. It is assumed that the inter-nucleic distll is uniform between all neighbor nuclei with
L = Nd. Circular boundary conditions are assumed, ieniiicleus at positiois really the same
(i.e. not merely of the same sort) as the nuclépesitionZ+L.

(11) The time-independent Schrodinger equation is ugechbdeling, thereby neglecting relativistic effect
and the magnetic moments of electron spins andreteorbits. Clearly, the Dirac equation would be
more adequate for modeling CP, because the chesdictelectron velocities can approach the spded o
light. However, the involved complexities of sugipeoach are avoided here.

(12) Magnetic fields from nuclear spins and movementhefuclei are neglected. This implies, that the
electron wave functions are modeled in an ineftaahe of reference, where the center of mass of all
nuclei is at rest.

(13) The multi-electron system is approximated by conmgud collection of one-electron orbitals, whereby
each electron orbital is subjected to the meartregdguotential and magnetic vector potential crddig
the total charge density and total current derwdigll other occupied orbitals and the nuclei. Haaili
exclusion principle is used for determining orbitatupations of the ground state. Exchange and
correlation energies are neglected.

3. CP Quantum Mechanics

For reasons of space constraints this chaptersepi® merely a summary of the mathematics. A cehgusive
version of this chapter can be found at [3].

In quantum mechanics a stationary multi-electraesis usually described by a wave functM‘(Fl,fZ,...fN)
satisfying the multi-electron time-independent $climger equation:
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where, for thd\-electron systenf[is the HamiltonianE is the total energy] is the kinetic energy operator,

U is the potential energy from the external fieldeda the positively charged nuclei, awd is the electron-
electron interaction energy.



The multi-electron wave functiohP(Fl,Fz,...FN) is usually formed by a Slater determinant to easamti-
symmetry.

However, the number of electrons in a CP can exdé&8dwhich renders equation (14) and a Slater detemtin
entirely impractical to compute, because a prograrmot handle equations with e.g*°lébordinates.

According to simplification (13) a rigorously sinaplapproach is used here for modeling CP, requioimgy
moderate compute power.

So, instead of using a multi-electron Schrodingguagion describing the pair-wise interaction betwdé

electrons, the cylindrical model ushb single-electron Schrodinger equationsiescribing an electron in the
mean potentialof all other electrons and of the nuclei:
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where, for the electron numbier is the total energy of this electron a¥flis the one-electron wave function
(H, T,U andV as above).

Of course, this is merely an approximation. Formei, the approach doesn’t account for the exchengegy
and the correlation energy usually deemed impoitegtiantum chemistry.

At first glance this looks still challenging to cpuote, because there ald Schrédinger equations to solve.
Fortunately, large numbers of these equations eacpmputed in groups, because they produce nderlgame
charge density distributions and current densigyriiutions.

In order to solve Schrédinger equations (15) apprately, the followingproduct ansatzis made to factorize
the wave function in cylindrical coordinates:

16) W(o.p.2)=W,(0)¥,(9)¥,(2)

Theaxial factor is solved by plain waves:

1) W(z)= \/%ékz

with the energy eigenvalues (measured in unith@Rydberg energy Ry):
(18) E,=a,’k’?

Due to simplification (6) the energy eigenvalues quantized to a discrete spectrum, because wawbars k
have to meet the following boundary condition:

19 Kk IIZTH, wherel [IN,

Theazimuthal factor is solved by:

(200 W,(p)=, /%Tém“” , wherem(Z

with eigenvalues (in units of Ry timpsz):

(1) E,=a,n’



The substitutions = VA and R (r) = p W, (,0) are used in the following. The reference distapgeis
defined as: i

(22) p, = % wheree is the elementary charde,is the length of the CP arfd is the total charge of alll
nuclei of the CP.

Theradial factor of the Schrédinger equation (15) can be esgued as:

23) r’R'+mR +{[Enm -U(r)-v(r)a%?- mz} R =0, whereEnmare the radial-azimuthal
eigenvalues in RWJ(r) is the electron-nuclear interaction energy in ¥{f) is the electron-electron
interaction energy in Ry and = po/ao (@p being the Bohr radius).

The followingansatz for the radial wave functionR is used:
24) R=f(r)lexg-a)

Functionf(r) is approximated by a polynomial

J
(25) f(r)=20jr”‘” for BON, andc; OR

j=0

The coefficient<; have to meet the normalization criteria:

26 1= ziqc (2|rr1+k+1+1)

G (eopmer
The exponential scaling factdiin (24) computes as:
27y { =a,/—E,, , whereE,, <0 (because only bound states are modeled)

The potential energy(r) + V(r) is also approximated by a polynomial
@8) U(r)+Vv(rv,)= Zb re

An approximated solution to equation (23) can then be expressed byitdrative formula computing the
coefficients from the value @:

(29) ¢ :(Zln.“"'l ) {[Z 2|n1+21 +abo]CJ 1+a22 Cj- p—l}’
wherec =0 fori <0

Note, that the coefficient(;j are all proportional to each other.

The totalnuclear repulsion energy(of all nuclei together) in units of Ry is:

_Q’a 8 \#z' 2z, .z _ L
(30) U, . _?Tm +z 1+2j ——=+ 42j , wheredg is the Bohr radiud. is

the length of the CFQ is the sum of all nuclear charges of the ER, the elementary charge; Znd
Z, are the charges of the two sorts of nuclei.



Theelectron-nuclei interaction energy(in units of Ry) is:
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The electron-electron interaction energy (in uaftRy) is:
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0
N is the total number of electrorgis the speed of light/; is the axial electron speed apds the
azimuth.

The electron velocity can be computed by its agigntum numbél.

2 -2
(33) v, ==c,|1- 27720'2|2i+1 , wherea is the fine-structure constant
z L2

4. Ablnitio Simulations of CP and Numerical Results

Based on the theory above the author is undertadingpitio (i.e. derived only from first principles) quantum-
mechanical simulations of CPs. This is the subjgaingoing research. The goal is to obtain the ttzive
properties of CP, such as its densities, intringizent and bonding energy.

The simulation tool and the computational resuitsbe made available at the author’'s web site [3].

Although initial results seem to agree with expenal evidenceat the current point in time it would be
premature to draw final conclusions The author believes, that the simulation reswitissignificantly impact
the course of future technical approaches on LENR.
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