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Abstract 

This document describes a new theory of LENR based on the experimental and theoretical 
findings of other researchers, such as Ken Shoulders [1], Edward H. Lewis [2], among others. 

After decades of research on high-density charge clusters, ball lightning and LENR it turns out, 
that Edward H. Lewis was right with his hypothesis: Atoms can enter a previously unknown state 
of matter, in which they behave like ball lightning, and which is an intermediate state of the LENR 
reaction. 

A quantum-mechanical model of this strange state of matter is provided by the author [3], which 
will in the following be called “condensed plasmoids (CP)”. 

In contrast to the quantum-mechanical model of the atom, which is based on the spherically 
symmetric electrostatic potential of the nucleus, the quantum-mechanical model of CP is based on 
the cylindrical symmetry of a very thin and very dense plasma “wire”. 

In CP both, the nuclei and the electrons are moving rapidly in opposite directions along the plasma 
wire. This results in a strong electric current through the wire, pinching the plasma thin via its 
strong magnetic field. 

The assumption, that the nuclei of the atoms are fixed points in space (Born-Oppenheimer 
approximation), is not adequate for modeling CP. The wave functions of all the electrons and all 
the nuclei are largely delocalized in one dimension. 

The intrinsic magnetic field of CP leads to self-organization of their shape in complicated ways, 
minimizing their energy: 

 

Figure 1 Example of the self-organized shape of a condensed plasmoid 

CP are extremely dense along one spatial dimension (much denser than ordinary matter). CP 
enable nuclear reactions between the ions via strong electronic screening of the Coulomb barrier. 

The gamma radiation of nuclear reactions inside the plasma wire is suppressed, because the dense 
electron current in the plasma wire provides high dampening of the dipole oscillation of excited 
nuclei. This mechanism is analogous to a traveling-wave tube. 
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1. Experimental Evidence of CP in LENR experiments 

Via thorough electron-microscopic analysis of Karabut’s glow discharge cathodes I. Savvatimova and B. 
Rodinov have discovered a multitude of strange traces [2]: 

   

Figure 2 Strange traces discovered by I. Savvatimova and B. Rodinov at Pd cathodes 

These traces can be understood by assuming they are caused by CP ionizing the surface of the metal. 

There is experimental evidence from Savvatimova and independently from Urutskoev (later reproduced by C. 
Daviau et. al), that CP can reside for hours and days in the remains of Ti wire explosions in water. From these 
remains CP can emit as “strange radiations”, which can leave peculiar traces at nuclear emulsions or X-Ray 
films brought in proximity to these remains: 

 

Figure 3 Residual trail mark of a CP, I. Savvatimova and B. Rodinov 

 

Figure 4 CP traces on X-ray film, presented at the EADS colloqium in 2010  
by C. Daviau, D. Priem and G. Racineux, Ecole centrale de Nantes 

The above image from Ecole centrale de Nantes has helped the author to understand, how CP self-organize from 
an originally linear form with open ends into a closed loop, where the intrinsic current flows back to the other 
end. 



Also, a wealth of experimental information on CP has been collected by Ken Shoulders [1] under experimental 
conditions much different from typical LENR experiments: 

      

Figure 5 Left: Pinhole camera side view of CP in vacuum. The length of the CP is approximately 0.1 inches. 
Right: Impact of an accelerated CP on a target surface. Ken Shoulders [1] 

It should be noted here, that the respective authors of the above experimental findings have drawn their own 
differing conclusions, on what the observed objects are. It is beyond the scope of this document to discuss the 
plausibility of these conclusions. 

2. The Cylindrical Model of CP 

Modeling of CP is based on the following basic assumptions: 

(1) CP contain ensembles of atomic nuclei densely lined up in a very narrow channel. 

(2) The distances between the nuclei are so small, that all electrons bound to these nuclei are delocalized 
along the channel. In other words: Even in their electronic ground state CP don’t consist of individual 
atoms. CP rather form a quasi-one-dimensional plasma. 

 

Figure 6 Basic model of a CP. The CP similarly extends to the left and to the right of this picture 

The shape and quantum mechanical state of CP can be very complicated. In order to obtain a simple quantum  
mechanical description of CP, the following simplifications are used, which will subsequently be called “the 
cylindrical model of CP”: 

(3) The CP are perfectly straight, i.e. they are not bent to rings, helices etc. The CP is oriented in parallel to 
the z-axis of the modeling coordinate system. 



(4) Most electrons bound to a CP are moving in z-direction, i.e. an electric current is flowing in negative 
z-direction. This is the result of spontaneous symmetry breaking, which occurs during orbital 
occupation. 

(5) The CP have length L and contain a total nuclear charge Q. Results will be analyzed for the limit 

∞→L and ∞→Q with charge density QL  being held constant. 

(6) The electron wave functions of CP are confined in the interval Lz <≤0 . At Lz =  these wave 

function are continuously extended to their value and gradient at 0=z , as if the CP were rings. 
However, this is meant to describe only the circular boundary condition of the wave functions at 

Lz = , not the shape of the CP. 

(7) No external field is applied to the CP. 

(8) The positive charge of the nuclei is homogeneously distributed on the z axis. The width of the nuclear 
charge channel is infinitesimal thin. (“homogeneously charged, infinitely thin wire”). 

(9) The Born-Oppenheimer approximation is broken down for the z-direction, but is used for the x and y 
directions. 

(10) For the purpose of computing the nuclear repulsion energy it is assumed that a CP contains two sorts of 
atomic nuclei with nuclear charges Z1 and Z2 in 50%-to-50% mixture. These charges are assumed to 

interleave along the z-axis. The total number of nuclei N is assumed to be 24 +n , with n being 
integer. It is assumed that the inter-nucleic distance d is uniform between all neighbor nuclei with 

NdL = . Circular boundary conditions are assumed, i.e. the nucleus at position z is really the same 

(i.e. not merely of the same sort) as the nucleus at position z+L. 

(11) The time-independent Schrödinger equation is used for modeling, thereby neglecting relativistic effects 
and the magnetic moments of electron spins and electron orbits. Clearly, the Dirac equation would be 
more adequate for modeling CP, because the characteristic electron velocities can approach the speed of 
light. However, the involved complexities of such approach are avoided here. 

(12) Magnetic fields from nuclear spins and movements of the nuclei are neglected. This implies, that the 
electron wave functions are modeled in an inertial frame of reference, where the center of mass of all 
nuclei is at rest. 

(13) The multi-electron system is approximated by computing a collection of one-electron orbitals, whereby 
each electron orbital is subjected to the mean electric potential and magnetic vector potential created by 
the total charge density and total current density of all other occupied orbitals and the nuclei. The Pauli 
exclusion principle is used for determining orbital occupations of the ground state. Exchange and 
correlation energies are neglected. 

3. CP Quantum Mechanics 

For reasons of space constraints this chapter represents merely a summary of  the mathematics. A comprehensive 
version of this chapter can be found at [3]. 

In quantum mechanics a stationary multi-electron state is usually described by a wave function ( )Nrrr
rrr

,..., 21Ψ  

satisfying the multi-electron time-independent Schrödinger equation: 
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where, for the N-electron system, Ĥ is the Hamiltonian, E  is the total energy, T̂  is the kinetic energy operator, 

U  is the potential energy from the external field due to the positively charged nuclei, and V  is the electron-
electron interaction energy. 



The multi-electron wave function ( )Nrrr
rrr

,..., 21Ψ  is usually formed by a Slater determinant to ensure anti-

symmetry. 

However, the number of electrons in a CP can exceed 1010, which renders equation (14) and a Slater determinant 
entirely impractical to compute, because a program cannot handle equations with e.g. 1010 coordinates. 

According to simplification (13) a rigorously simpler approach is used here for modeling CP, requiring only 
moderate compute power. 

So, instead of using a multi-electron Schrödinger equation describing the pair-wise interaction between N 

electrons, the cylindrical model uses N single-electron Schrödinger equations describing an electron in the 
mean potential of all other electrons and of the nuclei: 
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where, for the electron number i, iE  is the total energy of this electron and Ψi is the one-electron wave function 

(Ĥ, T̂ , U  and V  as above). 

Of course, this is merely an approximation. For example, the approach doesn’t account for the exchange energy 
and the correlation energy usually deemed important in quantum chemistry. 

At first glance this looks still challenging to compute, because there are N Schrödinger equations to solve. 
Fortunately, large numbers of these equations can be computed in groups, because they produce nearly the same 
charge density distributions and current density distributions. 

In order to solve Schrödinger equations (15) approximately, the following product ansatz is made to factorize 
the wave function in cylindrical coordinates: 

(16) ( ) ( ) ( ) ( )zz zΨΨΨ=Ψ ϕρϕρ ϕρ,,  

The axial factor is solved by plain waves: 
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with the energy eigenvalues (measured in units of the Rydberg energy Ry): 

(18) 22
0 kaEz =  

Due to simplification (6) the energy eigenvalues are quantized to a discrete spectrum, because wave numbers k 
have to meet the following boundary condition: 
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The azimuthal factor is solved by: 
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with eigenvalues (in units of Ry times ρ2): 
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The substitutions 
0ρ

ρ≡r  and ( ) ( )ρρ ii rR Ψ≡ 0  are used in the following. The reference distance ρ0 is 

defined as: 

(22) 
Q

eL

40 =ρ , where e is the elementary charge, L is the length of the CP and Q is the total charge of all 

nuclei of the CP. 

The radial factor of the Schrödinger equation (15) can be expressed as: 

(23) ( ) ( )[ ]{ } 0 2222
 =−−−+′+′′ RmrarVrUERrRr nm , where Enm are the radial-azimuthal 

eigenvalues in Ry, U(r) is the electron-nuclear interaction energy in Ry, V(r) is the electron-electron 

interaction energy in Ry and 00 aa ρ=  (a0 being the Bohr radius). 

The following ansatz for the radial wave function R is used: 

(24) ( ) ( )rrfR ζ−⋅= exp  

Function f(r) is approximated by a polynomial: 
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The coefficients cj have to meet the normalization criteria: 
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The exponential scaling factor ζ in (24) computes as: 

(27) nmEa −=ζ , where 0<nmE  (because only bound states are modeled) 

The potential energy U(r) + V(r) is also approximated by a polynomial: 
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An approximated solution to equation (23) can then be expressed by the iterative formula  computing the 
coefficients from the value of c0: 
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where 0=ic  for 0<i  

Note, that the coefficients jc are all proportional to each other. 

The total nuclear repulsion energy (of all nuclei together) in units of Ry is: 
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U ,  where a0 is the Bohr radius, L is 

the length of the CP, Q is the sum of all nuclear charges of the CP, e is the elementary charge, Z1 and 
Z2 are the charges of the two sorts of nuclei. 



The electron-nuclei interaction energy (in units of Ry) is: 
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The electron-electron interaction energy (in units of Ry) is: 
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where ( ) ( )∫ ∫∑ ′′
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N is the total number of electrons, c is the speed of light, vz is the axial electron speed and φ is the 
azimuth. 

The electron velocity can be computed by its axial quantum number l: 

(33) 
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4. Ab Initio Simulations of CP and Numerical Results 

Based on the theory above the author is undertaking ab initio (i.e. derived only from first principles) quantum-
mechanical simulations of CPs. This is the subject of ongoing research. The goal is to obtain the quantitative 
properties of CP, such as its densities, intrinsic current and bonding energy. 

The simulation tool and the computational results will be made available at the author’s web site [3]. 

Although initial results seem to agree with experimental evidence, at the current point in time it would be 
premature to draw final conclusions. The author believes, that the simulation results will significantly impact 
the course of future technical approaches on LENR. 
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